[1]周燕,张毅.基于Caputo导数的分数阶Pfaff-Birkhoff原理和Birkhoff方程(英文)[J].江西师范大学学报(自然科学版),2014,(02):153-157.
 ZHOU Yan,ZHANG Yi.Fractional Pfaff-Birkhoff Principle and Birkhoff's Equations within Caputo Fractional Derivatives[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(02):153-157.
点击复制

基于Caputo导数的分数阶Pfaff-Birkhoff原理和Birkhoff方程(英文)()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年02期
页码:
153-157
栏目:
出版日期:
2014-04-30

文章信息/Info

Title:
Fractional Pfaff-Birkhoff Principle and Birkhoff's Equations within Caputo Fractional Derivatives
作者:
周燕;张毅
苏州科技学院数理学院,江苏苏州,215009;苏州科技学院土木工程学院,江苏苏州,215011
Author(s):
ZHOU Yan;ZHANG Yi
关键词:
分数阶Pfaff-Birkhoff原理分数阶Birkhoff方程Caputo分数阶导数横截性条件
Keywords:
fractional Pfaff-Birkhoff principlefractional Birkhoff's equationCaputo fractional derivativetransversality condition
分类号:
O176;O316
文献标志码:
A
摘要:
研究了在Caputo分数阶导数下的分数阶Pfaff-Birkhoff变分问题.首先给出了Caputo分数阶导数的定义,以及相应的分部积分公式和交换关系,其次建立了分数阶Pfaff-Birkhoff原理和分数阶Birkhoff方程,最后举例说明结果的应用.
Abstract:
The fractional Pfaff-Birkhoff variational problem is studied under Caputo fractional derivative.First,the definition of Caputo fractional derivatives,the formula for integration by parts and the commutative relations between differential operation and variational operation are given.Second,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff's equations are obtained.And finally an example is given to illustrate the application of the results.

参考文献/References:

[1] Oldham K B,Spanier J.The fractional calculus [M].San Diego:Academic Press,1974.
[2] Podlubny I.Fractional differential equations [M].San Diego:Academic Press,1999.
[3] KilbasA A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations [M].Netherlands:Elsevier B V,2006.
[4] Riewe F.Nonconservative Lagrangian and Hamiltonian mechanics [J].Physical Review E,1996,53(2):1890-1899.
[5] Riewe F.Mechanics with fractional derivatioves [J].Phy-sical Review E,1997,55(3):3581-3592.
[6] Agrawal O P.Formulation of Euler-Lagrange equations for fractional variational problems [J].J Math Anal Appl,2002,272(1):368-379
[7] Agrawal O P.Fractional variational calculus in terms of Riesz fractional derivatives [J].J Phys A:Math Theor,2007,40(24):6287-6303.
[8] Agrawal O P.Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative [J].Journal of Vibration and Control,2007,13(9/10):1217-1237.
[9] Atanackovic T M,Konjik S,Pilipovic S.Variational problems with fractional derivatives:Euler-Lagrange equations [J].J Phys A:Math Theor,2008,41(9):095201.
[10] Atanackovic T M,Konjik S,Pilipovic S,Simic S.Variational problems with fractional derivatives:invariance conditions and Noether's theorem[J].Nonlinear Analysis,2009,71(5/6):1504-1517.
[11] Atanackovic T M,Konjik S,Oparnica L,et al.Generalized Hamilton's principle with fractional derivatives [J].J Phys A:Math Theor,2010,43(25):255203.
[12] El-Nabulsi A R.A fractional approach to nonconservative Lagrangian dynamical systems [J].Fizika A,2005,14(4):289-298.
[13] El-Nabulsi A R.Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order(a,b)[J].Math Methods Appl Sci,2007,30(15):1931-1939.
[14] El-Nabulsi A R,Torres D F M.Fractional action-like variational problems[J].J Math Phys,2008,49(5):053521.
[15] El-Nabulsi A R.Fractional Euler-Lagrange equations of order(a,b)for Lie algebroids [J].Studies in Mathematical Sciences,2010,1(1):13-20.
[16] Muslih S I,Baleanu D.Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives [J].J Math Anal Appl,2005,304(2):599-606.
[17] Muslih S I,Baleanu D.Formulation of Hamiltonian equations for fractional variational problems [J].Czechoslovak Journal of Physics,2005,55(6):633-764.
[18] Muslih S I,Baleanu D,Rabei E M.Fractional Hamilton's equations of motion in fractional time [J].Central European Journal of Physics,2007,5(4):549-557.
[19] Malinowska A B,Torres D F M.Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative [J].Computers and Mathematics with Applications,2010,59(9):3110-3116.
[20] Frederico G S F,Torres D F M.A formulation of Noether's theorem for fractional problems of the calculus of variations [J].Journal of Mathematical Analysis and Applications,2007,334(2):834-846.
[21] Frederico G S F.Fractional optimal control in the sense of Caputo and the fractional Noether's theorem [J].International Mathematical Forum,2008,3(10):479-493.
[22] Frederico G S F,Torres D F M.Fractional Noether's theorem in the Riesz-Caputo sense [J].Applied Mathematics and Computation,2010,217(3):1023-1033.
[23] Frederico G S F,Torres D F M.Constants of motion for fractional action-like variational problems [J].Int J Appl Math,2006,19(1):97-104.
[24] Frederico G S F,Torres D F M.Non-conservative Noether's theorem for fractional action-like problems with intrinsic and observer times [J].Int J Ecol Econ Stat,2007,9(7):74-82.
[25] Rabei E M,Ababneh B S.Hamilton-Jacobi fractional mechanics [J].J Math Anal Appl,2008,344(2):799-805.
[26] Rabei E M,Almayteh I,Muslih S I,et al.Hamilton-Jacobi formulation of systems within Caputo's fractional derivative [J].Physica Scripta,2008,77(1):1-6.
[27] Rabei E M,Rawashdeh I M,Muslih S,et al.Hamilton-Jacobi formulation for systems in terms of Riesz's fractional deriavatives [J].Int J Theor Phys,2011,50(5):1569-1576.
[28] Zhou Sha,Fu Jingli,Liu Yongsong.Lagrange equations of nonholonomic systems with fractional derivatives [J].Chin Phys B,2010,19(12):120301.
[29] Mei Fengxiang,Shi Rongchang,Zhang Yongfa,et al.Birkhoff dynamics system [M].Beijing:Beijing Institute of Technology Press,1996.
[30] Tarasov V E.Fractional dynamics:applications of fractio-nal calculus to dynamics of particles,fields and media [M].Beijing:Higher Education Press,2010.

备注/Memo

备注/Memo:
国家自然科学基金(10972151,11272227);江苏省普通高校研究生科研创新计划(CXZZ11_0949);苏州科技学院研究生科研创新计划(SKCX11S_050)
更新日期/Last Update: 1900-01-01