[1]伍亚军,李晓军.无界域上带奇异扰动的非自治FitzHugh-Nagumo系统拉回吸引子的存在性[J].江西师范大学学报(自然科学版),2014,(03):244-249.
 WU Ya-jun,LI Xiao-jun.The Pullback Attractors for the Singularly Perturbed Non-Autonomous FitzHugh-Nagumo System on Unbounded Domains[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(03):244-249.
点击复制

无界域上带奇异扰动的非自治FitzHugh-Nagumo系统拉回吸引子的存在性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年03期
页码:
244-249
栏目:
出版日期:
2014-06-30

文章信息/Info

Title:
The Pullback Attractors for the Singularly Perturbed Non-Autonomous FitzHugh-Nagumo System on Unbounded Domains
作者:
伍亚军;李晓军
河海大学理学院,江苏 南京,210098
Author(s):
WU Ya-jun;LI Xiao-jun
关键词:
非自治方程渐近紧拉回吸引子
Keywords:
non-autonomous equationasymptotic compactnesspullback attractor
分类号:
O241.82
文献标志码:
A
摘要:
研究无界区域上带奇异扰动的非自治FitzHugh-Nagumo系统的动力学行为,其中非线性项依赖于空间变量x.为克服Sobolev嵌入缺乏紧性,利用一致“tail”估计,证明系统所对应的过程是拉回渐近紧的,从而说明拉回吸引子的存在性.
Abstract:
The dynamical behavior of the singularly perturbed non-autonomous FitzHugh-Nagumo systems defined on unbounded domains is studied,where nonlinear terms are depending on the space variable x. In order to overcome the lacking compact of Sobolev imbedding,it is proved the process associated with the system is pullback asymptotic compactness by using uniform estimates on the tails of solutions,and show the existence of a pullback attractor.

参考文献/References:

[1] Abergel F.Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains [J].J Differential Equations,1990,83(1):85-108.
[2] Liu Weishi,Wang Bixiang.Asymptotic behavior of the FitzHugh-Nagumo system [J].International J Evolution Equations,2007,2(2):129-163.
[3] Robinson J C.Infinite-dimensional dynamical systems an introduction to dissipative parabolic PDEs and the theory of global attractors [M].Cambridge:Cambridge University Press,2001.
[4] Temam R.Infinite-dimensional dynamical systems in mechanics and physics [M].2nd ed.New York:Springer,1997.
[5] Chenpyzhov V V,Vishik M I.Attractors for equations of mathematical physics [M].Rhode Island:Amer Math Soc Colloq Publ,2002.
[6] Cheban D N,Kloeden P E,Schmalfuss B.The relationship between pullback forward and global attractors of non-autonomous dynamical systems [J].Nonlinear Dyn Syst Theory,2002,2(2):9-28.
[7] Marín-Rubio P,Real J.On the relation of between two different concepts of pullback attractors for non-autonomous dynamical systems [J].Nonlinear Anal,2009,71(9):3956-3963.
[8] Caraballo T,Lukaszewicz G,Real J.Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].Nonlinear Anal,2006,64(3):484-498.
[9] García-Luengo J,Marín-Rubio P,Real J.Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behavior [J].J Differential Equations,2012,252(8):4333-4356.
[10] Babin A V,Vishik M I.Attractors of partial differential equations in an unbound domain [J].Proc Roy Soc Edinburgh,1990,116 A:221-243.
[11] Wang Bixiang.Attractors for reaction-diffusion equation in unbounded domains [J].Physica D,1999,128(1):41-52.
[12] Wang Bixiang.Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains [J].Nonlinear Anal,2009,70(11):3799-3915.
[13] Song Haitao.Pullback attractors of non-autonomous reaction-diffusion equations in H0 [J].J Differential Equations,2010,249(10):2357-2376.
[14] Zhang Yanhong,Zhong Chengkui,Wang Suyun.Attractors in L(R) for a class of reaction-diffusion equations [J].Nonlinear Anal,2009,71(5/6):1901-1908.
[15] Marion M.Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems [J].SIAM J Math Anal,1989,20(4):816-844.

备注/Memo

备注/Memo:
国家自然科学基金(11101121)
更新日期/Last Update: 1900-01-01