参考文献/References:
[1] Ambrosetti A,Brézis H,Cerami G.Combined effects of concave and convex nonlinearities in some elliptic problems [J].J Funct Anal,1994,122(2):519-543.
[2] 张申贵.局部超线性常微分p-Laplacian系统的多重周期解 [J].江西师范大学学报:自然科学版,2013,37(3):240-243.
[3] García Azorero J,Manfredi J,Peral Alonso I.Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations [J].Commun Contemp Math,2000,2(3):385-404.
[4] Guo Zongming,Zhang Zhitao.W versus C local minimizers and multiplicity results for quasilinear elliptic equations [J].J Math Anal Appl,2003,286(1):32-50.
[5] Lü Dengfeng,Xiao Jianhai,Xu Guojin.Multiple solutions for a class of quasilinear elliptic equations involving concave-convex nonlinearities [J].Journal of Mathematics,2013,13(1):6-14.
[6] Filippakis M,Gasinski L,Papageorgiou,N S.On the existence of positive solutions for hemivariational inequalities driven by the p-Laplacian [J].J Glob Optim,2005,31(1):173-189.
[7] Gasinski L.Multiplicity theorems for scalar periodic problems at resonance with p-Laplacian-like operator [J].J Glob Optim,2007,38(3):459-478.
[8] Kristaly A,Marzantowicz W,Varga C.A non-smooth three critical points theorem with applications in differential inclusions [J].J Glob Optim,2010,46(1):49-62.
[9] Teng Kaimin.Multiple solutions for semilinear resonant elliptic problems with discontinuous nonlinearities via nonsmooth double linking theorem [J].J Glob Optim,2010,46(1):89-110.
[10] Amrouss A R El,Kissi F.Multiplicity of solutions for a general p(x)-Laplacian Dirichlet problem [J].Arb Journal of Mathematical Sciences,2013,19(2):205-216.
[11] Shi Xiayang,Ding Xuanhao.Existence and multiplicity of solutions for a general p(x)-Laplacian Neumann problem [J].Nonlinear Analysis,2009,70(10):3715-3720.
[12] Gasinski L,Papageorgiou N S.Multiple solutions for semilinear hemivariational inequalities at resonance [J].Publ Math Debrecen,2001,59(1/2):121-146.
[13] Gasinski L,Papageorgiou N S.A multiplicity result for nonlinear second order periodic equations with nonsmooth potential [J].Bull Belge Math Soc,2002,9(2):245-258.
[14] Harjulehto P,Hästö P,Lê U V,et al.Overview of differential equations with non-standard growth [J].Nonlinear Analysis,2010,72(12):4551-4574.
[15] Clarke F H.Optimization andnonsmooth analysis [M].New York:Wiley,1983.