[1]李强,王黎明.基于LASSO方法的结构突变理论研究综述[J].江西师范大学学报(自然科学版),2015,(02):189-193.
 LI Qiang,WANG Liming.The Review on Structural Break Theory Based on LASSO Method[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(02):189-193.
点击复制

基于LASSO方法的结构突变理论研究综述()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年02期
页码:
189-193
栏目:
出版日期:
2015-04-10

文章信息/Info

Title:
The Review on Structural Break Theory Based on LASSO Method
作者:
李强;王黎明
1.上海财经大学统计与管理学院,上海 200433; 2.泰山学院数学与统计学院,山东 泰安 271021
Author(s):
LI QiangWANG Liming
关键词:
结构突变 LASSO 模型选择 坐标下降算法
Keywords:
structural break LASSO model selection coordinate decent algorithm
分类号:
O 212.1
文献标志码:
A
摘要:
结构突变是统计学、经济学、信号处理和生物信息学等学科领域中的研究热点之一.Z.Harchaoui 等提出了基于LASSO的结构突变点检测方法,是近几年结构突变问题的最新研究方法.为了在国内推行该方法,系统介绍了国外基于LASSO方法的几种变点模型中的变点检测问题,其核心是把变点检测问题转化成模型选择问题来解决,并阐述了相应的算法.最后探讨该方法在不同学科领域的应用和前景展望.
Abstract:
Structural break problem is one of the hot topics in statistics,economics,signal processing and bioinformatics and other fields.Harchaoui and Levy-Leduc(2008)initiatively proposed structural break point detection method based on LASSO method,which is a new method in dealing with structural break problems.The paper systematically introduces the change point detection problem based on LASSO method in several change point models.The core is transforming the change point detection problem into model selection problem.The corresponding algorithms are introduced.Finally,the applications and perspective of this new method in some fields are put forward.

参考文献/References:

[1] Page E S.Continuous inspection schemes [J].Biometrika,1954,42(1/2):100-115.
[2] Basseville M,Nikiforov V.Detection of abrupt changes:theory and application [M].New Jersey:Prentice-Hall,1993.
[3] Brodsky B E,Darkhovsky B S.Nonparametric methods in change point problems [M].Dordrecht:Kluwer,1993.
[4] Csorgo M,Horvath L.Limit theory in change point analysis [M].New York:Wiley,1997.
[5] Chen Jie,Gupta A K.Parametric statistical change point analysis [M].Boston:Springer,2000.
[6] Perron P.Dealing with structural breaks [M].London:Palgrave Macmillan,2006:278-352.
[7] 陈希孺.变点统计分析简介(I)[J].数理统计与管理,1991,10(1):55-58.
[8] 陈希孺.变点统计分析简介(II)[J].数理统计与管理,1991,10(2):52-59.
[9] 陈希孺.变点统计分析简介(III)[J].数理统计与管理,1991,10(3):52-59.
[10] 陈希孺.变点统计分析简介(IV)[J].数理统计与管理,1991,10(4):54-58.
[11] Tibshirani R.Regression shrinkage and selection via the Lasso [J].Journal of the Royal Statistical Society,1996,58B(1):267-288.
[12] Efron B,Hastie T,Johnstone I,et al.Least angle regression [J].The Annals of Statistics,2004,32(2):407-451.
[13] Fan Jianqing,Li Runze.Variable selection via nonconcave penalized likelihood and its oracle properties [J].Journal of the American Statistical Association,2001,96(456):1348-1360.
[14] Tibshirani R,Saunders M,Rosset S,et al.Sparsity and smoothness via the fused Lasso [J].Journal of the Royal Statistical Society,Series B,2005,67(1):91-108.
[15] Yuan Ming,Lin Yi.Model selection and estimation in regression with grouped variables [J].Journal of the Royal Statistical Society,2006,68B(1):49-67.
[16] Zou Hui,Hastie T.Regularization and variable selection via the elastic net [J].Journal of the Royal Statistical Society,2005,67B(2):301-320.
[17] Zou Hui.The adaptive Lasso and its oracle properties [J].Journal of the American Statistical Association,2006,101(476):1418-1429.
[18] Harchaoui Z,Levy-Leduc C.Catching change points with Lasso [C]∥Platt J C,Koller D,Singer Y,et al.Advances in Neural Information Processing System,Vancouver:MIT Press,2008:161-168.
[19] Harchaoui Z,Levy-Leduc C.Multiple change point estimation with a total variation penalty [J].Journal of the American Statistical Association,2010,105(492):1480-1493.
[20] Bleakley K,Vert J-P.The group fused Lasso for multiple change-point detection [EB/OL].http:∥arxiv.org/pdf/1106.4199v1.pdf,2011-06-21.
[21] Friedman J,Hastie T,Hofling H,et al.Pathwise coordinate optimization [J].The Annals of Applied Statistics,2007,1(2):302-332.
[22] Angelosante D,Giannakis G B.Group lassoing change-points in piecewise-constant AR processes [J].Eurasip Journal on Advances in Signal Processing,2012,1(70):1-16.
[23] Chan N H,Yau C Y,Zhang Rongmao.Group lasso for structural break time series [J].Journal of the American Statistical Association,2014,109(506):590-599.
[24] Ciuperca G.Model selection by lasso methods in a change-point model [J].Statistical Papers,2014,55(4):349-374.
[25] Qian Junhui,Su Liangjun.Shrinkage estimation of regression models with multiple structural changes [EB/OL].http:∥www.mysmu.edu/fac-ulty/ljsu/Publications/struc-ture_change20130629.pdf,2013-06-29.
[26] Zhang Bingwen,Geng Jun,Lai Lifeng.Detecting changes in regression models via sparse group Lasso [EB/OL].http:∥users.wpi.edu/~bzhang/icassp_v1.pdf,2013-12-26.
[27] Zhong Ming.Break point estimation and variable selection in quantile regressions [D].Davis:University of California,2012.
[28] Ciuperca G.Quantile regression in high dimension with breaking [J].Journal of Statistical Theory and Applications,2013,12(3):288-305.
[29] Ciuperca G.Adaptive Lasso model selection in a multiphase quantile regression [EB/ OL].http:∥arxiv.org/pdf/1309.1262v2.pdf,2014-03-12.
[30] Qian Junhui,Su Liangjun.Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso [EB/OL].http:∥www.mysmu.edu/faculty/ljsu/Publicatio-ns/Panel_structure_change20140130.pdf,2014-01-30.
[31] Laville M,Teyssiere G.Adaptive detection of multiple change-points in asset price volatility,Long Memory in Economics [M].Heidelberg:Springer,2007:129-156.
[32] Tibshirani R,Wang Peng.Spatial smoothing and hot spot detection for CGH data using the fused Lasso [J].Biostatistics,2008,9(1):18-29.
[33] Bai Jushan.Least absolute deviation estimation of a shift [J].Econometric Theory,1995,11(3):403-436.
[34] Bai Jushan.Estimation of multiple-regime regressions with least absolutes deviation [J].Journal of Statistical Planning and Inference,1998,74(1):103-134.

备注/Memo

备注/Memo:
全国统计科学研究重点课题(2011LZ035);山东省自然科学基金(ZR2014AL006);上海财经大学研究生创新基金(CXJJ-2014-445)
更新日期/Last Update: 1900-01-01