参考文献/References:
[1] 徐志强.压缩感知 [J].中国科学,2012,42(9):865-877.
[2] 文再文,印卧涛,刘歆,等.压缩感知稀疏优化简介 [J].运筹学学报,2012,16(3):49-62.
[3] 焦李成,杨淑媛,刘芳.压缩感知回顾与展望 [J].电子学报,2011(7):1651-1662.
[4] 秦林霞.非负稀疏优化的精确松弛理论研究 [D].北京:北京交通大学,2013.
[5] 梁锡军.稀疏优化在机器学习中的若干应用 [D].大连:大连理工大学,2013.
[6] 张军.先验信息整合的压缩感知理论及其应用研究 [D].广州:华南理工大学,2013.
[7] Amari Yukawa.Minkovskian gradient for sparse optimization [J].IEEE Journal of Selected Topics in Signal Processing,2013,7(4):576-585.
[8] Zhao Shilei,Wu Peng,Liu Yupeng.An online kernel learning algorithm based on orthogonal matching pursuit [J].Journal of Software,2012,7(9): 2076-2082.
[9] Foucart S.A note on guaranteed sparse recovery via l1-minimization [J].Applied and Computational Harmonic Analysis,2010,29(1):97-103.
[10] Lu Nan,Ma Feng,Liu Sanyang.A non-interior continuation algorithm for solving the convex feasibility problem[J].Applied Mathematical Modelling,2014,38(9):5421-5430.
[11] Daubechies Devore,Ronald Fornasier Gunturk.Iteratively reweighted least squares minimization for sparse recovery [J].Communications on Pure and Applied Mathematics,2010,63(1):1-38.
[12] Ray Maleh.Efficient sparse approximation methods for medical imaging [D].Ann Arbor: University of Michigan,2009.
[13] 刘谢进,杨格兰,霍玉洪.递推加权最小二乘算法的研究 [J].系统仿真学报,2009(14): 4248-4250.
[14] 朱红.求解L1-正则项优化问题的两种算法 [D].郑州:河南大学,2012.
[15] 胡彬,徐会林,王泽文.基于模型函数与L-曲线的正则化参数选取方法[J].江西师范大学学报:自然科学版,2014,38(6):569-573.
[16] 肖庭延,于慎根,王彦飞.反问题的数值解法 [M].北京:科学出版社,2003.
[17] 袁亚湘,孙文瑜.最优化理论与方法 [M].北京:科学出版社,1997.