[1]李订芳,江磊.基于l1与l0正则化的压缩感知数值算法[J].江西师范大学学报(自然科学版),2015,(03):281-285.
 LI Dingfang,JIANG Lei.The Numerical Algorithm of Compressive Sensing Based on l1 and l0 Regularization[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(03):281-285.
点击复制

基于l1与l0正则化的压缩感知数值算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年03期
页码:
281-285
栏目:
出版日期:
2015-05-31

文章信息/Info

Title:
The Numerical Algorithm of Compressive Sensing Based on l1 and l0 Regularization
作者:
李订芳;江磊
武汉大学数学与统计学院,湖北 武汉 430072
Author(s):
LI DingfangJIANG Lei
关键词:
l1正则化 l0正则化 压缩感知 稀疏恢复
Keywords:
l1 regularization l0 regularization compressive sensing sparse restoration (
分类号:
TP 391.41
文献标志码:
A
摘要:
针对压缩感知模型,讨论了基于l0正则化的正交匹配追踪算法(OMP)与基于l1正则化的同伦算法(HM)和迭代加权最小二乘法(IRLS).通过数值实验结果分析,验证了3种算法的有效性,且相对于2种基于l1正则化的算法,OMP算法的迭代次数与耗时更少,均方误差更小.
Abstract:
For compressive sensing,orthogonal matching pursuit algorithm(OMP)based on l0 norm regularization,homotopy algorithm(HM)based on l1 norm regularization and iteratively reweighted least squares algorithm(IRLS)based on l1 norm regularization are introduced.In numerical experiment,the validity of three algorithms above through analysis of numerical result are proved.Furthermore,for lower CPU cost and smaller mean square error,OMP is more efficient than other two algorithms based on l1 norm regularization.

参考文献/References:

[1] 徐志强.压缩感知 [J].中国科学,2012,42(9):865-877.
[2] 文再文,印卧涛,刘歆,等.压缩感知稀疏优化简介 [J].运筹学学报,2012,16(3):49-62.
[3] 焦李成,杨淑媛,刘芳.压缩感知回顾与展望 [J].电子学报,2011(7):1651-1662.
[4] 秦林霞.非负稀疏优化的精确松弛理论研究 [D].北京:北京交通大学,2013.
[5] 梁锡军.稀疏优化在机器学习中的若干应用 [D].大连:大连理工大学,2013.
[6] 张军.先验信息整合的压缩感知理论及其应用研究 [D].广州:华南理工大学,2013.
[7] Amari Yukawa.Minkovskian gradient for sparse optimization [J].IEEE Journal of Selected Topics in Signal Processing,2013,7(4):576-585.
[8] Zhao Shilei,Wu Peng,Liu Yupeng.An online kernel learning algorithm based on orthogonal matching pursuit [J].Journal of Software,2012,7(9): 2076-2082.
[9] Foucart S.A note on guaranteed sparse recovery via l1-minimization [J].Applied and Computational Harmonic Analysis,2010,29(1):97-103.
[10] Lu Nan,Ma Feng,Liu Sanyang.A non-interior continuation algorithm for solving the convex feasibility problem[J].Applied Mathematical Modelling,2014,38(9):5421-5430.
[11] Daubechies Devore,Ronald Fornasier Gunturk.Iteratively reweighted least squares minimization for sparse recovery [J].Communications on Pure and Applied Mathematics,2010,63(1):1-38.
[12] Ray Maleh.Efficient sparse approximation methods for medical imaging [D].Ann Arbor: University of Michigan,2009.
[13] 刘谢进,杨格兰,霍玉洪.递推加权最小二乘算法的研究 [J].系统仿真学报,2009(14): 4248-4250.
[14] 朱红.求解L1-正则项优化问题的两种算法 [D].郑州:河南大学,2012.
[15] 胡彬,徐会林,王泽文.基于模型函数与L-曲线的正则化参数选取方法[J].江西师范大学学报:自然科学版,2014,38(6):569-573.
[16] 肖庭延,于慎根,王彦飞.反问题的数值解法 [M].北京:科学出版社,2003.
[17] 袁亚湘,孙文瑜.最优化理论与方法 [M].北京:科学出版社,1997.

备注/Memo

备注/Memo:
国家自然科学基金(61271337)
更新日期/Last Update: 1900-01-01