[1]丁树良,汪文义,罗芬,等.多值Q矩阵理论[J].江西师范大学学报(自然科学版),2015,(04):365-370.
 DING Shuliang,WANG Wenyi,LUO Fen,et al.The Polytomous Q-Matrix Theory[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(04):365-370.
点击复制

多值Q矩阵理论()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年04期
页码:
365-370
栏目:
出版日期:
2015-07-01

文章信息/Info

Title:
The Polytomous Q-Matrix Theory
作者:
丁树良;汪文义;罗芬;熊建华
江西师范大学计算机信息工程学院,江西 南昌,330022
Author(s):
DING Shuliang;WANG Wenyi;LUO Fen;XIONG Jianhua
关键词:
多值Q矩阵Q矩阵理论扩张算法认知诊断测验蓝图
Keywords:
polytomous Q-matrixQ-matrix theory:expansion algorithmtest blueprint of diagnostic testing
分类号:
B841.7;TP301.6
文献标志码:
A
摘要:
罗列了特殊多值Q矩阵与0-1可达阵的相互转换算法,给出多值扩张算法和多值理想反应模式的计算方法。在多值扩张算法的基础上,证明了在一定条件下,多值拟可达阵作为测验Q矩阵的子矩阵,可以使得多值的知识状态和理想反应模式一一对应,从而可指导多级评分认知诊断测验蓝图编制。
Abstract:
An algorithm to make the translation from the polytomous quasi-reachability matrix( Rp )to a dichoto-mous reachability matrix( R2 )has been given. An expansion algorithm of Rp and a method to compute polytomous ideal response patterns( PIRP)are also provided under the polytomous Q-matrix. Given certain item scoring rules proposed by Sun Jia'nan,et al,the statement that the Rp matrix can be used as the submatrix of the polytomous Q-matrix to guarantee bijective mapping from the set of PIRP to the set of the polytomous knowledge states has been proved. This statement has not been proved in the study of Sun Jia'nan.

参考文献/References:

[1] Tatsuoka K K.Architecture of knowledge structures and cognitive diagnosis:a statistical pattern classication approach [C].Nichols P D,Chipman S F,Brennan R L.Cognitively diagnostic assessments.Erlbaum:Hillsdale,1995:327-359.
[2] Tatsuoka K K.Cognitive assessment:an introduction to the rule space method [M].New York:Taylor & Francis Group,2009.
[3] 丁树良,汪文义,杨淑群.认知诊断测验蓝图的设计 [J].心理科学,2011,34(2):258-265.
[4] Chiu Chia-yi,Jeffrey A Douglas,Li Xiaodong.Cluster analysis for cognitive diagnosis:theory and applications[J].Psychometrika,2009,74(4):633-665.
[5] 丁树良,杨淑群,汪文义.可达矩阵在认知诊断测验编制中的重要作用 [J].江西师范大学学报:自然科学版,2010,34(5):490-495.
[6] 丁树良,罗芬,汪文义.多级评分认知诊断测验蓝图的设计—独立型和收敛型结构 [J].江西师范大学学报:自然科学版,2014,38(3):265-269.
[7] 丁树良,汪文义,罗芬.多级评分认知诊断测验蓝图的设计—根树型结构 [J].江西师范大学学报:自然科学版,2014,38(2):111-118.
[8] 丁树良,罗芬,汪文义.Q矩阵理论的扩展 [J].心理学探新,2012,32(5):410-422.
[9] 丁树良,汪文义,罗芬.认知诊断中Q矩阵和Q矩阵理论 [J].江西师范大学学报:自然科学版,2012,36(5):441-445.
[10] Chen Jinsong,de la Torre J.A general cognitive diagnosis model for expert-defined polytomous attributes [J].Applied Psychological Measurement,2013,37(6):419-437.
[11] 丁树良,罗芬,汪文义,等.0-1和多值可达矩阵的性质及应用 [J].江西师范大学学报:自然科学版,2015,39(1):64-68.
[12] Sun Jia'nan,Xin Tao,Zhang Shumei,et al.A polytomous extension of the generalized distance discriminating method [J].Applied Psychological Measurement,2013,37(7):503-521.
[13] Ding Shuliang,Luo Fen,Cai Yan,et al.Complement to Tatsuoka's Q matrix theory [C].Shigemasuk,Okada A,Imaizumi T,et al.New Trends in Psychometrics.Tokyo:Universal Academy Press,2008:417-423.
[14] 丁树良,祝玉芳,林海菁,等.Tatsuoka Q 矩阵理论的修正 [J].心理学报,2009,41(2):175-181.
[15] 杨淑群,蔡声镇,丁树良,等,求解简化Q矩阵的扩张算法 [J].兰州大学学报:自然科学版,2008,44(3):87-91,96.
[16] 杨淑群,丁树良.有效对象的判定理论与方法 [J].江西师范大学学报:自然科学版,2011,35(1):1-4
[17] 丁树良,罗芬.由偏序关系的可达阵导出Hasse图的有效算法—兼谈其在认知诊断中的作用 [J].江西师范大学学报:自然科学版,2013,37(5):441-444.
[18] 丁树良,毛萌萌,汪文义,等.教育认知诊断测验与认知模型一致性的评估 [J].心理学报,2012,44(11):1535-1546.

相似文献/References:

[1]丁树良,王文义,罗芬.认知诊断中Q矩阵和Q矩阵理论[J].江西师范大学学报(自然科学版),2012,(05):441.
 DING Shu-liang,WANG Wen-yi,LUO Fen.Q Matrix and Q Matrix Theory in Cognitive Diagnosis[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(04):441.

备注/Memo

备注/Memo:
国家自然科学基金(30860084,31160203,31100756,31360237);教育部人文社会科学研究青年基金(13YJC880060);江西省教育厅科技计划(GJJ13207,GJJ13208,GJJ13209,GJJ13226,GJJ13227)
更新日期/Last Update: 1900-01-01