[1]陈亚慧,叶继华.基于决策树分类的个性化农产品移动信息服务系统[J].江西师范大学学报(自然科学版),2016,40(02):145-148.
 CHEN Yahui,YE Jihua.Personalized Agricultural Products Mobile Information Service System Based on Decision Tree Classification[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(02):145-148.
点击复制

基于决策树分类的个性化农产品移动信息服务系统()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年02期
页码:
145-148
栏目:
出版日期:
2016-03-25

文章信息/Info

Title:
Personalized Agricultural Products Mobile Information Service System Based on Decision Tree Classification
作者:
陈亚慧;叶继华
江西师范大学计算机信息工程学院,江西 南昌 330022
Author(s):
CHEN YahuiYE Jihua
College of Computer Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
决策树算法 个性化推荐 协同过滤算法 农产品移动信息服务
Keywords:
decision tree algorithm personalized recommendation collaborative filtering algorithm products-mobile information service
分类号:
TP 391
文献标志码:
A
摘要:
针对农产品移动信息服务的需求,结合分类算法和个性化推荐算法,提出了一种基于分类的推荐算法.利用决策树分类方法对农产品进行分类,获得分类后的数据,采用协同过滤算法分析分类数据,查找兴趣相似的用户,将感兴趣的农产品信息推荐给正在使用系统的用户.实验结果表明:与传统的推荐方法及相比,该系统向用户推荐了兴趣度更高的农产品移动信息.
Abstract:
Aimed at mobile information services of agricultural products,combined with personalized recommendation algorithm and classification algorithm,provided a the recommend algorithm based on classification.use of decision tree classification method for classifying agricultural products,obtaining classified data,use of collaborative filtering algorithms analyze categorical data and look for similar user interest,recommend produce information to the user.Experimental results show that the traditional method and compared recommendation,the system recommended a higher degree of interest in agricultural information to mobile users.

参考文献/References:

[1] 王国霞,刘贺平.个性化推荐系统综述 [J].计算机工程与应用,2012,48(7):66-76.
[2] 刘玮.电子商务系统中的信息推荐方法研究 [J].情报科学,2006,24(2):300-303.
[3] Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms [C].New York:ACM Press,2001:285-295.
[4] Karypis G.Evaluation of item-based top-n recommendation algorithms [C]∥Proceedings of the 10th International Conference on Information and Knowledge Management,2001.
[5] Zhou Tao,Ren Jie,Medo M,et al.Bitpartite network projection and personal recommendation [J].Phys Rev E,2007.76(4):70-80.
[6] Zhou Tao,Jing Luoluo,Su Riqi,et al.Effect of initial configuration on network-based recommendation [J].Europhys Lett,2008,81(5):15-18.
[7] Basu C,Hirsh H,Cohen W.Recommendation as classfication:using social and content-based information in recommendation [C].Mello Park:AAAI Press,1998:714-720.
[8] Claypool M,Gokhale A,Miranda T,et al.Combining content-based and collaborative filters in an online newspaper [C].New York:ACM Press,1999.
[9] 刘小虎,李生.决策树的优化算法 [J].软件学报,1998,9(10):797-799.
[10] Erick T Byrd,Larry Gustke.Using decision trees to identify tourism stakeholders [J].Journal of Place Management and Development,2011,4(2):148-168.
[11] 许海玲.互联网推荐系统比较研究 [J].软件学报,2009,20(2):350-362.
[12] Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms [C].New York:ACM Press,2001:285-295.
[13] 范波,程久军.用户间多相似度协同过滤推荐算法 [J].计算机科学,2012,39(1):23-16.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(61462042)和江西师范大学研究生创新基金(YJS2013082)资助项目.
更新日期/Last Update: 1900-01-01