参考文献/References:
[1] Tang Chunlei,Wu Xingping.Notes on periodic solutions of subquadratic second order systems [J].J Math Anal Appl,2003,285(1):8-16.
[2] Bartolo P,Benci V,Fortunato D.Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity [J].Nonlinear Anal,1983,7(9):981-1012.
[3] Xu Bo,Tang Chunlei.Some existence results on periodic solutions of ordinary p-Laplacian systems [J].J Math Anal Appl,2007,333(2):1228-1236.
[4] Zhang Qiongfen,Tang Xianhua.New existence of periodic solutions for second order non-autonomous second-order Hamiltonian systems [J].J Math Anal Appl,2010,369(1):357-367.
[5] Wang Zhiyong,Xiao Jianzhong.On periodic solutions of subquadratic second order non-autonomous Hamiltonian systems [J].Appl Math Lett,2015,40:72-77.
[6] 张申贵.局部超线性常微分p-Laplacian系统的多重周期解 [J].江西师范大学学报:自然科学版,2013,37(3):240-243.
[7] Jiang Qin,Tang Chunlei.Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems [J].J Math Anal Appl,2007,328(1):380-389.
[8] Wang Zhiyong,Zhang Jihui.Periodic solutions of a class of second order non-autonomous Hamiltonian systems [J].Nonlinear Anal,2010,72(12):4480-4487.
[9] Pasca D.Periodic solutions of a class of nonautonomous second order differential systems with (q,p)-Laplacian [J].Bull Belg Math Soc Simon Stevin,2010,17(5):841-851.
[10] Pasca D,Tang Chunlei.Some existence results on periodic solutions of nonautonomous second order differential systems with (q,p)-Laplacian [J].Appl Math Lett,2010,23(3):246-251.
[11] Pasca D,Tang Chunlei.Some existence results on periodic solutions of ordinary (q,p)-Laplacian systems [J].J Appl Math Inform,2011,29(1/2):39-48.
[12] Pasca D,Tang Chunlei.New existence results on periodic solutions of nonautonomous second order differential systems with (q,p)-Laplacian [J].Bull Belg Math Soc Simon Stevin,2012,19(1):19-27.
[13] Pasca D,Wang Zhiyong.New existence results on periodic solutions of nonautonomous second order Hamiltonian systems with (q,p)-Laplacian [J].Bull Belg Math Soc Simon Stevin,2013,20(1):155-166.
[14] 崔德标.二阶非自治(q,p)-Laplace方程组解的存在性 [J].中山大学学报:自然科学版,2013,52(3):45-47.
[15] Mawhin J,Willem M.Critical point theory and Hamiltonian systems [M].New York:Springer-Verlag,1989.
相似文献/References:
[1]汪小明,谢新华.一类具偏差变元的2阶微分方程周期解问题[J].江西师范大学学报(自然科学版),2012,(02):168.
WANG Xiao-ming,XIE Xin-hua.The Periodic Solution for a Kind of Second Order Differential Equations with Deviating Arguments[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):168.
[2]林文贤.关于一类具偏差变元的Duffing型方程的周期解注记[J].江西师范大学学报(自然科学版),2012,(05):499.
LIN Wen-xian.The Notes on Periodic Solution for a Kind of Duffing Equation with Deviating Arguments[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):499.
[3]李芳,张清业.一类超2次2阶哈密顿系统的无穷多周期解[J].江西师范大学学报(自然科学版),2012,(06):589.
LI Fang,ZHANG Qing-ye.Infinitely Many Periodic Solutions for a Class of Superquadratic Second Order Hamiltonian Systems[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):589.
[4]王少敏,杨存基.用最小作用原理研究具有次线性的非线性项2阶系统[J].江西师范大学学报(自然科学版),2013,(03):236.
WANG Shao-min,YANG Cun-ji.Research Second Order Systems with Sublinear Nonlinearity by the Least Action Principle[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(05):236.