参考文献/References:
[1] Gross E P.Hydrodynamics of a superfluid condensate [J].J Math Phys,1963,4(2):195-207.
[2] Dalfovo F,Giorgini S.Theory of Bose-Einstein condensation in trapped gases [J].Physics,1999,71(3):463-512.
[3] Wang Hanquan.Numerical studies on split-step finite difference method for nonlinear Schr?dinger equations [J].Appl Math Comput,2005,170(1):17-35.
[4] Bao Weizhu.Numerical methods for the nonlinear Schr?dinger equation with nonzero far-field conditions [J].Methods and Applications of Analysis,2004,11(3):1-22.
[5] Kong Linghua,Hong Jialin,Zhang Jingjing.LOD-MS for Gross-Pitaevskii equation in Bose-Einstein condensates [J].Commun Comput Phys,2013,14(1):219-241.
[6] Muruganandam P,Adhikari S K.Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap [J].Comput Phys Commun,2009,180(10):1888-1912.
[7] Feng Kang.On difference schemes and symplectic geometry [C]//Feng Kang.Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations,Computation of PDEs,Beijing:Science Press,1985:42-58.
[8] Fu Fangfang,Kong Linghua,Wang Lan.Symplectic Euler method for nonlinear high order Schr?dinger equation with a trapped term [J].Adv Appl Math Mech,2009,1(5):699-710.
[9] 符芳芳,孔令华.一类新的含双幂非线性项的Schr?dinger方程的差分格式 [J].江西师范大学学报:自然科学版,2010,34(1):22-26.
[10] Chen Jingbo,Qin Mengzhao,Tang Yifa.Symplectic and multi-symplectic methods for the nonlinear Schr?dinger equations [J].Comput Math with Appl,2002,43(8/9):1095-1106.
[11] 秦孟兆,王雨顺.偏微分方程中的保结构算法 [M].杭州:浙江科学技术出版社,2011.
[12] Wang Yushun,Hong Jialin.Multi-symplectic algorithms for Hamiltonian partial differential equations [J].Commun Appl Math Comput,2013,27(2):163-230.
[13] 黄红,王兰.薛定谔方程的局部1维多辛算法 [J].江西师范大学学报:自然科学版,2011,35(5):455-458.
[14] 徐远,孔令华,王兰,等.带有阻尼项的4阶非线性薛定谔方程的显式辛格式 [J].江西师范大学学报:自然科学版,2013,37(3):244-248.
[15] Wang Zhongcheng,Shao Hezhu.A new kind of discretization scheme for solving a two-dimensional time-independent Schr?dinger equation [J].Comput Phys Commun,2009,180(6):842-849.
[16] Kalogiratou Z,Monovasilis T,Simos T E.Symplectic integrators for the numerical solution of the Schr?dinger equation [J].J Comput Appl Math,2003,158(1):83-92.