[1]刘 敏,钟学秀*.一类特殊Caffarelli-Kohn-Nirenberg不等式的简单证明[J].江西师范大学学报(自然科学版),2018,(03):242-247.[doi:10.16357/j.cnki.issn1000-5862.2018.03.05]
 LIU Min,ZHONG Xuexiu*.The Simple Proof of a Special Class of Caffarelli-Kohn-Nirenberg Inequality[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(03):242-247.[doi:10.16357/j.cnki.issn1000-5862.2018.03.05]
点击复制

一类特殊Caffarelli-Kohn-Nirenberg不等式的简单证明()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年03期
页码:
242-247
栏目:
变分法与椭圆方程
出版日期:
2018-06-20

文章信息/Info

Title:
The Simple Proof of a Special Class of Caffarelli-Kohn-Nirenberg Inequality
文章编号:
1000-5862(2018)03-0242-06
作者:
刘 敏12钟学秀3*
1.辽宁石油化工大学科学学院,辽宁 抚顺 113001; 2.北京师范大学数学科学学院,北京 100084; 3.中山大学数学学院,广东 广州 510275
Author(s):
LIU Min12ZHONG Xuexiu3*
1.School of Sciences,Liaoning Shihua University,Fushun Liaoning 113001,China; 2.School of Mathematical Sciences,Beijing Normal University,Beijing 100084,China; 3.Department of Mathematics,Sun Yat-sen University,Guangzhou Guangdong 510275,China
关键词:
Caffarelli-Kohn-Nirenberg不等式 最佳常数 Emden-Fowler变换
Keywords:
Caffarelli-Kohn-Nirenberg inequality best constant Emden-Fowler transformation
分类号:
O 177.91; O 175.29
DOI:
10.16357/j.cnki.issn1000-5862.2018.03.05
文献标志码:
A
摘要:
简单回顾一些有关Caffarelli-Kohn-Nirenberg不等式相关方面的成果,并利用Emden-Fowler变换对特殊的CKN不等式 ∫RN(|u|p)/(|x|p(1+t))dx≤(p/(N-p-pt))pRN(|u|p)/(|x|pt)dx,u∈Cc(RN\{0}) 给出一个简单的证明,其中2≤p<∞,p(1+t)<N,(p/(N-p-pt))p为最佳常数.
Abstract:
Some results about the well known Caffarelli-Kohn-Nirenberg inequality are reviewed.And a simple proof of the following special CKN inequality ∫RN(|u|p)/(|x|p(1+t))dx≤(p/(N-p-pt))pRN(|u|p)/(|x|pt)dx,u∈Cc(RN\{0}) is given by using the Emden-Fowler transformation,where 2≤p<∞,p(1+t)<N,and(p/(N-p-pt))p is the best constant.

参考文献/References:

[1] Caffarelli L,Kohn R,Nirenberg L.First order interpolation inequalities with weights [J].Compositio Mathematica,1984,53(3):259-275.
[2] Lin Changshou.Interpolation inequalities with weights [J].Comm Partial Differential Equations,1986,11(14):1515-1538.
[3] Bartsch T,Peng Shuangjie,Zhang Zhitao.Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities [J].Calculus of Variations and Partial Differential Equations,2007,30(1):113-136.
[4] Cao Daomin,Han Pigong.Solutions to critical elliptic equations with multi-singular inverse square potentials [J].J Differential Equations,2006,224(2):332-372.
[5] Catrina F,Wang Zhiqiang.On the Caffarelli-Kohn-Nirenberg inequalities:sharp constants,existence(and nonexistence),and symmetry of extremal functions [J].Communications on Pure and Applied Mathematics,2001,54(2):229-258.
[6] Chen Jianlong,Lin Changshou.Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary [J].Archive for Rational Mechanics and Analysis,2010,197(2):401-432.
[7] Chou K S,Chu C W.On the best constant for a weighted Sobolev-Hardy inequality [J].Journal of the London Mathematical Society,1993,48(1):137-151.
[8] Dolbeault J,Esteban M J,Tarantello G,et al.The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities,in two space dimensions [J].Annali della Scuola Normale Superiore di Pisa,2008,7(2):313-341.
[9] Li Yanyan.Prescribing scalar curvature on Sn and related problems [J].J Differential Equations,1995,120(2):319-410.
[10] Lieb E H.Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities [J].Ann of Math,1983,118(2):349-374.
[11] Lin Changshou,Wang Zhiqiang.Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities [J].Proceedings of the American Mathematical Society,2004,132(6):1685-1691.
[12] 邹文明.变分方法及其在非线性偏微分方程应用方面的进展和未决问题 [J].江西师范大学学报:自然科学版,2018,42(2):111-129.
[13] Berestycki H,Esteban M.Existence and bifurcation of solutions for an elliptic degenerate problem [J].J Differential Equations,1997,134(1):1-25.
[14] Dautray R,Lions J L.Mathematical analysis and numerical methods for science and technology:Physical origins and classical methods [M].Berlin:Spinger,2000.
[15] Aubin T.Problemes isoperimetriques et espaces de Sobolev [J].J Differential Geometry,1976,11(4):573-598.
[16] Talenti G.Best constant in Sobolev inequality [J].Ann Mat Pura Appl,1976,110(4):353-372.
[17] Bliss G A.An integral inequality [J].Journal of the London Mathematical Society,1930,1(1):40-46.
[18] Damascelli L,Merchan S,Montoro L,et al.Radial symmetry and applications for a problem involving the -Δp(·)operator and critical nonlinearity in RN [J].Adv Math,2014,265:313-335.
[19] Wang Zhiqiang,Willem M.Singular minimization problems [J].J Differential Equations,2000,161(2):307-320.
[20] Wang Zhiqiang,Willem M.Caffarelli-Kohn-Nirenberg inequalities with remainder terms [J].Journal of Functional Analysis,2003,203(2):550-568.
[21] Dolbeault J,Esteban M J.A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities [J].J Numer Math,2012,20(3/4):233-249.
[22] Dolbeault J,Esteban M J,Loss M,et al.On the symmetry of extremals for the Caffarelli-Kohnnirenberg inequalities [J].Advanced Nonlinear Studies,2009,9(4):713-727.
[23] Dolbeault J,Esteban M J.Extremal functions in some interpolation inequalities:symmetry,symmetry breaking and estimates of the best constants [M]∥Exner P.Mathematical results in quantum physics,Hackensack:World Sci Publ,NJ,2011:178-182.
[24] Mitidieri E.A simple approach to Hardy inequalities [J].Mat Zametki,2000,67(4):563-572.
[25] Hardy G H.Notes on some points in the integral calculus [J].Messenger Math,1928,57:12-16.
[26] Hardy G H,Littlewood J E,Polya G.Inequalities [M].Cambridge:Cambridge University Press,1952.

备注/Memo

备注/Memo:
收稿日期:2018-01-30
基金项目:国家自然科学基金(11701248)资助项目.
通信作者:钟学秀(1989-),女,广东徐闻人,副研究员,主要从事非线性泛函分析、变分法和偏微分方程的研究.E-mail:zhongxuexiu1989@163.com
更新日期/Last Update: 2018-06-20