[1]徐 飞,李庶民*.具有双时滞的企业竞争模型的稳定性分析[J].江西师范大学学报(自然科学版),2018,(05):518-526.[doi:10.16357/j.cnki.issn1000-5862.2018.05.15]
 XU Fei,LI Shumin*.The Stability Analysis of the Enterprise Competition Model with Two Time Delays[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(05):518-526.[doi:10.16357/j.cnki.issn1000-5862.2018.05.15]
点击复制

具有双时滞的企业竞争模型的稳定性分析()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年05期
页码:
518-526
栏目:
数学与应用数学
出版日期:
2018-10-20

文章信息/Info

Title:
The Stability Analysis of the Enterprise Competition Model with Two Time Delays
文章编号:
1000-5862(2018)05-0518-09
作者:
徐 飞李庶民*
昆明理工大学理学院数学系,云南 昆明 650500
Author(s):
XU FeiLI Shumin*
Department of Mathematics,Faculty of Science,Kunming University of Science and Technology,Kunming Yunnan 650500,China
关键词:
企业竞争模型 Hopf分支 稳定性 时滞微分方程
Keywords:
enterprise competitive model Hopf branch stability the delay differential equation
分类号:
O 175.1
DOI:
10.16357/j.cnki.issn1000-5862.2018.05.15
文献标志码:
A
摘要:
以一类3维金融企业竞争模型为研究对象,研究时滞反馈作用下企业竞争的稳定性.首先,运用Hopf分支理论与稳定性得到系统正平衡点的特性; 其次,取时滞τ1和τ2作为分支参数,得到当经过分支点时,系统正平衡点的稳定性发生改变,继而引起混沌现象的消失,且可以分支出周期轨,也可以利用Hassard方法与中心流形定理,得到周期解的分支方向与稳定性的判定公式; 最后,利用Matlab数值模拟了时滞受控系统动力学行为随参数的演变,从而验证解析结果的有效性.
Abstract:
A three-dimensional financial enterprise competition model is made as the research object in this paper,and the stability of enterprise competition under the action of time-delay feedback is studied.Firstly,the positive equilibrium characteristics of the system are gotten on the basis of the theory of Hopf branch and stability.Secondly,taking time-delay τ1 and τ2 as branch parameters,the stability of the positive equilibrium point changes in the system when going through a branch point,which leads to the disappearance of the chaos phenomenon and can branch out of the cycle track.Similarly,the Hassard method and center manifold theorem are used to get the branch direction of periodic solution and judgment formula of stability.Finally,under the numerical simulation of Matlab,the dynamic behavior of the time-delay controlled system in the evolution of parameters is studied.Consequently,the validity of the analytical results is verified.

参考文献/References:

[1] 李继彬,冯贝叶.稳定性,分支与混沌[M].昆明:云南科技出版社,1995.
[2] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1997.
[3] Xu Rui,Ma Zhen.Stability and Hopf bifurcation in a predator-prey model with stage structure for the predator[J].Nonlinear Anal Real World Appl,2008,9(4):1444-1460.
[4] Yuan Sanling,Song Yongli.Stability and Hopf bifurcation in a delayed Leslie-Gower predator-prey system[J].J Math Anal Appl,2009,335(1):82-100.
[5] Song Yongli,Han Maoan,Peng Yahong.Stability and Hopf bifurcation in a competitive Lotka-Volterra system with two delays[J].Chaos,Solitons and Fractals,2004,22(5):1139-1148.
[6] Tang Xianhua,Zhou Xingfu.Global attractivity of non-autonomous Lotka-Volterra competition system without instantaneous negative feedback[J].Journal of Differential Equations,2003,192(2):502-535.
[7] Sun Chengjun,Lin Yiping,Han Maoan.Stability and Hopf bifurcation for an epidemic disease model with delay[J].Chaos,Solitons and Fractals,2006,30(1):204-216.
[8] Yan Xiangping,Chu Yandong.Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system[J].Journal of Computational and Applied Mathematics,2006,196(1):198-210.
[9] Freeman J,Hannan M T.Niche width and the dynamic of organizational populations[J].American Journal of Sociological,1983,88(6):1116-1145.
[10] Moore J F.Predators and prey:a new ecology of competition[J].Harvard Business Review,1993,71(3):75-86.
[11] 刘凯.一类时滞金融模型的稳定性分析[D].镇江:江苏大学,2011:20-33.
[12] Chen Yuanyuan,Song Changming.Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay[J].Chaos,Solotions and Fractals,2008,38(4):1104-1114.
[13] Kar T K,Batabyal A.Stability and bifurcation of a prey-predator model with time delay[J].Comptes Rendus Biology,2009,332(7):642-651.
[14] Hassard B D,Kazarinoff N D,Wan Yieh Hei.Theory and application of Hopf bifurcation[M].Cambridge:Cambridge University Press,1981:961-969.
[15] Paolo Russu.Hopf bifurcation in a environmental defensive expenditures model with time delay[J].Chaos,Solitions and Fractals,2009,42(5):3147-3159.
[16] Hastings A,Powell T.Chaos in a three-species food chain[J].Ecology,1991,72(3):896-903.

备注/Memo

备注/Memo:
收稿日期:2018-03-20
基金项目:国家自然科学基金(11561034)资助项目.
通信作者:李庶民(1965-),男,云南楚雄人,副教授,主要从事非线性动力系统及其应用研究.E-mail:Leesm007@163.com
更新日期/Last Update: 2018-10-20