[1]陆万春,漆勇方*,李良松.局部分数阶微分系统的李雅普诺夫不等式研究[J].江西师范大学学报(自然科学版),2018,(06):592-595.[doi:10.16357/j.cnki.issn1000-5862.2018.06.07]
 LU Wanchun,QI Yongfang*,LI Liangsong.The Lyapunov-Type Inequality for Local Fractional Differential Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(06):592-595.[doi:10.16357/j.cnki.issn1000-5862.2018.06.07]
点击复制

局部分数阶微分系统的李雅普诺夫不等式研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年06期
页码:
592-595
栏目:
复分析研究
出版日期:
2018-12-20

文章信息/Info

Title:
The Lyapunov-Type Inequality for Local Fractional Differential Equation
文章编号:
1000-5862(2018)06-0592-04
作者:
陆万春漆勇方*李良松
萍乡学院工程与管理学院,江西 萍乡 337000
Author(s):
LU WanchunQI Yongfang*LI Liangsong
School of Management and Engineering,Pingxiang University,Pingxiang Jiangxi 337000,China
关键词:
局部分数阶 格林函数 边值问题 李雅普诺夫不等式
Keywords:
local fractional Green's function boundary value problem Lyapunov-type inequality
分类号:
O 174.5
DOI:
10.16357/j.cnki.issn1000-5862.2018.06.07
文献标志码:
A
摘要:
利用局部分数阶积分,将微分方程转换成积分方程,在此基础上构造格林函数,通过研究格林函数的最大值,得到李雅普诺夫不等式.此研究结果可分析局部分数阶微分系统解的不存在区间,也可研究局部分数阶微分系统特征值问题.
Abstract:
The local fractional differential equation with boundary conditions is studied,and a Lyapunov-type inequality is presented.The main steps are as follows,in the first place,the local fractional differential equation is transformed into the local integral equation through the local fractional integral tool.Green's function is established.Lyapunov-type inequality is obtained based on the simple analysis of the Green's function.The result can be applied to study the interval where the local fractional system has no nontrivial solution.In addition,eigenvalue for local fractional system can be studied through the result.

参考文献/References:

[1] Lyapunov A.Probleme general de la stabilite de mouvement[M].Princeton:Princeton Univ Press,1947:259-260.
[2] Parhi N,Panigrahi S.Lyapunov-type inequality for higher order differential equations[J].Math Slovaca,2002,52(1):31-46.
[3] Tiryaki A.Recent developments of Lyapunov-type inequalities[J].Adv Dyn Syst Appl,2010,5(2):231-248.
[4] Cakmak D.Lyapunov-type integral inequalities for certain higher order differential equations[J].Appl Math Comput,2010,216(2):368-373.
[5] Yang Xiaojing,Luo Guiming.Lyapunov-type inequality for a class of even-order differential equations[J].Appl Math Comput,2010,215(11):3884-3890.
[6] Zhang Qiming,He Xiaofei.Lyapunov-type inequalities for even order differential equations[J].Appl Math Lett,2012,25(11):1830-1834.
[7] 肖水明,杨兰惠,周家兴.分数阶流行病模型的近似解析解[J].江西师范大学学报:自然科学版,2015,39(5):526-530.
[8] Ferreira R A C.A Lyapunov-type inequality for a fractional boundary value problem[J].Fract Calc Appl Anal,2013,16(4):978-984.
[9] Ferreira R A C.On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function[J].J Math Anal Appl,2014,412(2):1058-1063.
[10] 杨志宏,张彩霞,屈双惠,等.异分数阶chen系统的动力学特性及其多元电路实现[J].江西师范大学学报:自然科学版,2017,41(2):133-139.
[11] Khalil R,Horani M Al,Yousef A,et al.A new definition of fractional derivative[J].J Comput Appl Math,2014,264(5):65-70.
[12] Yang Xiaojun.A short introduction to Yang-Laplace transforms in fractal space[J].Advances in Information Technology and Management,2012,1(2):38-43.
[13] 谢志勇,谢显华,马丽.一类非线性分数阶微分方程反周期边值问题解的存在性[J].江西师范大学学报:自然科学版,2014,38(6):562-568.
[14] Yang Xiaojun.Local fractional integral equations and their applications[J].Advances in Computer Science and its Applications,2012,1(4):234-239.
[15] Yang Xiaojun.Local fractional integral transforms[J].Progr in Nonlinear Sci,2011,4:1-225.

备注/Memo

备注/Memo:
收稿日期:2018-02-11
基金项目:国家自然科学基金(11661065),江西省教育厅科技课题(GJJ151264,GJJ161265)和萍乡市科技计划(2017GY005)资助项目.
作者简介:陆万春(1978-),男,江西信丰人,副教授,主要从事复分析研究.E-mail:luwanchun540@163.com
通信作者:漆勇方(1984-),男,江西萍乡人,讲师,主要从事微分方程研究.E-mail:qiyongf2007@163.com
更新日期/Last Update: 2018-12-20