[1]韩晓珍,付平福*.双变量生存数据之间的关联评估(英文)——一种基于Copula的方法[J].江西师范大学学报(自然科学版),2019,(01):13-21.[doi:10.16357/j.cnki.issn1000-5862.2019.01.03]
 HAN Xiaozhen,FU Pingfu*.Evaluating the Correlation Coefficient Between Bivariate Survival Times ——a Copula-Based Approach[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(01):13-21.[doi:10.16357/j.cnki.issn1000-5862.2019.01.03]
点击复制

双变量生存数据之间的关联评估(英文)——一种基于Copula的方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年01期
页码:
13-21
栏目:
生物数学
出版日期:
2019-02-10

文章信息/Info

Title:
Evaluating the Correlation Coefficient Between Bivariate Survival Times ——a Copula-Based Approach
文章编号:
1000-5862(2019)01-0013-09
作者:
韩晓珍1付平福23*
1.克利夫兰诊所定量健康科学系,俄亥俄 44195,美国; 2.凯斯西储大学人口与定量健康科学系,俄亥俄 44106,美国; 3.凯斯西储大学综合癌症中心,俄亥俄 44106,美国
Author(s):
HAN Xiaozhen1FU Pingfu23*
1.Department of Quantitative Health Sciences,Cleveland Clinic,Cleveland Ohio 44195,USA; 2.Departments of Population and Quantitative Health Sciences,Case Western Reserve University,Cleveland Ohio 44106,USA; 3.Case Comprehensive Cancer Center,Case Western Reserve University,Cleveland Ohio 44106,USA
关键词:
双变量生存数据 Coupla方法 关联分析 关联系数 审查百分比
Keywords:
bivariate survival data copula approach correlation analysis correlation coefficient censoring percentage
分类号:
O 211; Q 332
DOI:
10.16357/j.cnki.issn1000-5862.2019.01.03
文献标志码:
A
摘要:
生存时间之间的关联分析引起许多从事生物与医学领域研究者的兴趣.这种分析的目的是利用Coupla方法调查在蒙特卡罗适度审查背景下,双变量生存数据之间的关联.该文利用皮尔森关联系数去估计双变量失败数据之间的关联.研究结果表明:当审查百分比低时,基于Gubel的估计方法更为鲁棒,而且正关联越强,分别用审查百分比是0%和30%所估计的结果越精确.这对基于Frank,Gumbel和Clayton的估计方法是正确的,甚至在Copula假设条件下真实情形也成立.
Abstract:
The analysis of correlations within pairs of survival times is of great interest to many researchers in biology and medicine.The analysis objective is to investigate the association of bivariate survival data under the setting of low-moderate percentage of censoring through Monte Carlo simulations using a copula approach.Here the association of bivariate survival data is estimated using Spearman's correlation coefficient.The results from simulation studies show that when the percentage of censoring is low,Gumbel-based estimation procedure is much more robust,and the stronger a positive association is,the more accurate estimate can be obtained when the censoring percentage is 0% and 30%.This is true for the Frank,Gumbel and Clayton-based estimation procedures under the condition that the copula assumption made here is the same as the true one.

参考文献/References:

[1] Haddad R I,Shin D M.Recent advances in head and neck cancer[J].New England Journal of Medicine,2008,359(11):1143-1154.
[2] Kendall M G,Gibbons J D.Rank correlation methods[M].Oxford:Oxford University Press,1990.
[3] Schemper M,Kaider A,Wakounig S,et al.Estimating the correlation of bivariate failure times under censoring[J].Stat Med,2013,32(27):4781-4790.
[4] Shih J H,Louis T A.Inferences on the association parameter in copula models for bivariate survival data[J].Biometrics,1995,51(4):1384-1399.
[5] Liebetrau A M.Measures of association[M].Newbury Park,London,New Belhi:Sage Publications,Inc,1983:44.
[6] Lai C D,Balakrishnan N.Continuous bivariate distributions[M].2nd edition.New York:Springer,2009.
[7] Sklar M.Fonctions de repartition an dimensions et leurs marges[J].Publ Inst Statist Univ Paris,1959(8):229-231.
[8] Nelsen R B.An introduction to copulas[M].New York:Springer-Verlag,2006:2.
[9] Aas,Kjersti.Modelling the dependence structure of financial assets:a survey of four copulas[J].Samba,2004,22(4):1-18.
[10] Huster W J,Brookmeyer R,Self S G.Modelling paired survival data with covariates[J].Biometrics,1989,45(1):145-156.
[11] McGilchrist C A,Aisbett C W.Regression with frailty in survival analysis[J].Biometrics,1991,47(2):461-466.
[12] Collett D.Modelling survival data in medical research[M].Ohio:Chapman and Hall/CRC,2003:12.
[13] Bélisle C J P.Convergence theorems for a class of simulated annealing algorithms on Rd[J].J Appl Probab,1992,29(4):885-895.
[14] Broyden C G.The convergence of a class of double-rank minimization algorithms:1.general considerations[J].IMA J Appl Math,1970,6(1):76-90.
[15] Fletcher R.A new approach to variable metric algorithms[J].Comput J,1970,13(3):317-322.
[16] Goldfarb D.A family of variable-metric methods derived by variational means[J].Math Comput,1970,24(109):23-26.
[17] Efron B,Tibshirani R J.An introduction to the bootstrap[M].Ohio:Chapman and Hall/CRC,1998:153.
[18] Wagenmakers E J,Farrell S.AIC model selection using Akaike weights[J].Psychon Bull Rev,2004,11(1):192-196.
[19] Akaike H.A new look at the statistical model identification[J].IEEE Trans Autom Control,1974,19(6):716-723.
[20] Yan Jun.Enjoy the joy of copulas:with a package copula[J].Journal of Statistical Software,2007,21(4):1-21.
[21] Casella G,Berger R L.Statistical inference[M].Mason,OH:Cengage Learning,2001:417.
[22] Li Bo,Genton M G.Nonparametric identification of copula structures[J].J Am Stat Assoc,2013,108(502):666-675.

备注/Memo

备注/Memo:
收稿日期:2018-10-30
基金项目:凯斯综合癌症中心生物统计学和生物信息学(P30CA43703)资助项目.
通信作者:付平福(1963-),男,江西樟树人,副教授,主要从事生物统计方面的研究.E-mail:pxf16@case.edu
更新日期/Last Update: 2019-02-10