[1]扈培础.2阶齐次线性偏微分方程与特殊函数乘积关联的整函数解(英文)[J].江西师范大学学报(自然科学版),2019,(02):111-121.[doi:10.16357/j.cnki.issn1000-5862.2019.02.01]
 HU Peichu.The Entire Solutions of Homogeneous Linear Partial Differential Equations of the Second Order Related to Products of Special Functions[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(02):111-121.[doi:10.16357/j.cnki.issn1000-5862.2019.02.01]
点击复制

2阶齐次线性偏微分方程与特殊函数乘积关联的整函数解(英文)()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
111-121
栏目:
复分析研究
出版日期:
2019-04-10

文章信息/Info

Title:
The Entire Solutions of Homogeneous Linear Partial Differential Equations of the Second Order Related to Products of Special Functions
文章编号:
1000-5862(2019)02-0111-11
作者:
扈培础
山东大学数学学院,山东 济南 250100
Author(s):
HU Peichu
Department of Mathematics, Shandong University, Jinan Shandong 250100, China
关键词:
2阶齐次线性偏微分方程 特殊函数 整函数解
Keywords:
homogeneous linear partial differential equations of the second order special function entire solutions
分类号:
O 174.52
DOI:
10.16357/j.cnki.issn1000-5862.2019.02.01
文献标志码:
A
摘要:
利用高维值分布理论、特殊函数理论以及经典的特殊常微分方程,研究了几个2阶齐次线性偏微分方程,给出了这些偏微分方程与特殊函数乘积密切相关的整函数解的特征,开辟了偏微分方程研究的新途径.
Abstract:
By using value distribution theory in heigh dimensional spaces,special functions and classic ordinary differiantial equations,some homogenius linear partial differiantial equations of second order are studied by characterizing entire solutions related closely products of special functions,and a new direction of partial differential equations is enhibited.

参考文献/References:

[1] Bernteǐn S N.Sur la nature analytique des solutions de certaines équations aux dériveés parttielles du second order[J].C R Acad Sci Paris,1903,137:778-781.
[2] Lewy H.Neuer Beweis des analytischen charakters der losungen elliptische differential gleichungen[J].Math Ann,1929,101(1):609-619.
[3] Henrici P.On certain series expansions involving Whittaker functions and Jacobi polynomials[J].Pacific J Math,1955,5(Suppl 1):725-744.
[4] Szegö G.Othogonal polynomials[M].New York:American Mathematical Society,1959.
[5] Berenstein C A,Li Baoqin.On certain first-order partial differential equations in Cn[J].Progr Math,2005,238:29-36.
[6] Hu Peichu,Yang Chungchun.Malmquist type theorem and factorization of meromorphic solutions of partial differential equations[J].Complex Variables Theory Appl,1995,27(3):269-285.
[7] Li Baoqin.Entire solutions of certain partial differential equations and factorization of partial derivatives[J].Trans Amer Math Soc,2005,357(8):3169-3177.
[8] Li Baoqin,Saleeby E G.Entire solutions of first-order partial differential equations[J].Complex Variables,2003,48(8):657-661.
[9] Hu Peichu,Li Baoqin.Unicity of meromorphic solutions of partial differential equations[J].Journal of Mathematical Sciences,2011,173(2):201-206.
[10] Hu Peichu,Li Baoqin.On meromorphic solutions of linear partial differential equations of second order[J].J Math Anal Appl,2012,393(1):200-211.
[11] Hu Peichu,Yang Chungchun.Global solutions of homogeneous linear partial differential equations of the second order[J].Michigan Math J,2009,58(3):807-831.
[12] Hu Peichu,Yang Chungchun.Uniqueness theorems of meromorphic functions in several complex variables[J].Scientific Bulletin of Belgorod State University,2009,68(13):45-52.
[13] Hu Peichu,Yang Chungchun.A linear homogeneous partial differential equation with entire solutions represented by Bessel polynomials[J].Journal of Mathematical Analysis and Applications,2010,368(1):263-280.
[14] Darboux G.Mémoire sur l'approximation des fonctions de très grand nombres[J].Journ de Mathematiques,1878,4(3):377-416.
[15] Mo Ye.Legendre functions[M].Jinan:Shandong University Press,1988.
[16] Rusev P.Convergence of series of Jacobi and Bessel polynomials on the boundaries of their regions of convergence[J].B"lgar Akad Nauk Otdel Mat Fiz Nauk Izv Mat Inst,1966,9:73-84.
[17] Rusev P.Expansion of analytic functions in series of classical orthogonal polynomials[J].Banach Center Publications,1983,11(1):287-298.
[18] Whittaker R E,Watson G N.A course of modern analysis[M].Cambridge:Cambridge University Press,1946.
[19] Bajcev Iv.Sur les polynomes de Jacobi[J].Bull Inst Math Acad Bulg Sci,1963,7:75-87.
[20] Rusev P. Expansion of analytic functions in series of Jacobi polynomials[J].Bull Inst Math Acad Bulg Sci,1963,7:61-73.
[21] Siegel C L.Transcendental numbers[M].Princeton: Princeton University Press,1949.
[22] Grosswald E.Bessel polynomials[R].Lecture Notes in Math,Berlin:Springer-Verlag,1978.
[23] Abul-Ez M A.Bessel polynomial expansions in spaces of holomorphic functions[J].Journal of Mathematical Analysis and Applications,1998,221(1):177-190.
[24] Perron O.Über das Verhalten einer ausgearteten hypergeometrischen Reihe bei unbegrenzten Vachstum eines parameters[J].J Reine Angew Math,1921,151(1):63-78.
[25] Pollard H.Representation of an analytic function by a Laguerre series[J].Ann of Math,1947,48(2):358-365.
[26] Szász O,Yeardley N.The representation of an analytic function by general Laguerre series[J].Pac J Math,1958,8(3):621-633.
[27] Hille E.Contribution to the theory of Hermitian series,II:the representation problem[J].Trans Amer Math Soc,1940,47(1):80-94.
[28] Hille E.A class of reciprocal functions[J].Annals of Mathematics,1926,27(4):427-464.

备注/Memo

备注/Memo:
收稿日期:2018-10-22 基金项目:教育部长江学者团队(IRT1264),山东省自然科学基金(ZR2018MA014)和山东大学基础研究(2017JC019)资助项目. 作者简介:扈培础(1961-),男,山东青州人,教授,博士生导师,主要从事单或多元复分析、非阿基米德分析、数论、复动力系统等方向的研究.E-mail:pchu@sdu.edu.cn
更新日期/Last Update: 2019-04-10