[1]陈海莹,郑秀敏*.齐次与非齐次复线性复合函数方程亚纯解的增长性[J].江西师范大学学报(自然科学版),2019,(04):336-342.[doi:10.16357/j.cnki.issn1000-5862.2019.04.02]
 CHEN Haiying,ZHENG Xiumin.The Growth of Meromorphic Solutions of Homogeneous and Non-Homogeneous Complex Linear Equations for Composite Functions[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(04):336-342.[doi:10.16357/j.cnki.issn1000-5862.2019.04.02]
点击复制

齐次与非齐次复线性复合函数方程亚纯解的增长性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年04期
页码:
336-342
栏目:
数学与应用数学
出版日期:
2019-08-10

文章信息/Info

Title:
The Growth of Meromorphic Solutions of Homogeneous and Non-Homogeneous Complex Linear Equations for Composite Functions
文章编号:
1000-5862(2019)04-0336-07
作者:
陈海莹郑秀敏*
江西师范大学数学与信息科学学院,江西 南昌 330022
Author(s):
CHEN HaiyingZHENG Xiumin
College of Mathematics and Informatics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
复线性复合函数方程 亚纯函数(下)级(下)型
Keywords:
complex linear equations for composite functions meromorphic function(lower)order(lower)type
分类号:
O 174.52
DOI:
10.16357/j.cnki.issn1000-5862.2019.04.02
文献标志码:
A
摘要:
运用亚纯函数的Nevanlinna值分布理论,研究了一类齐次与非齐次复线性复合函数方程亚纯函数解的增长性,并推广至更一般的含微分的复线性复合函数方程的情形.当这些方程允许有多项系数具有最大级或最大下级时,在一定条件下得到了这些方程非零亚纯解的级或下级的下界的估计.
Abstract:
The growth of meromorphic solutions of a kind of homogenous and non-homogeneous complex linear equations for composite functions with meromorphic coefficients is investigated by the Nevanlinna's value distribution of meromorphic function,which is generalized into the more general case of complex linear differential equations for composite functions.When more than one coefficient of involved equations have the maximal order or the maximal lower order,some estimates on the lower bound of the order or the lower order of non-zero meromorphic solutions of involved equations are obtained under some conditions.

参考文献/References:

[1] Hayman W K.Meromorphic functions[M].Oxford:Clarendon Press,1964.
[2] Laine I.Nevanlinna theory and complex differential equations[M].Berlin:Walter de Gruyter,1993.
[3] 仪洪勋,杨重骏.亚纯函数唯一性理论[M].北京:科学出版社,1995.
[4] 杨乐.值分布论及其新研究[M].北京:科学出版社,1982.
[5] Bernal L G.On growth k-order of solutions of a complex homogeneous linear differential equation[J].Proc Amer Math Soc,1987,101(2):317-322.
[6] Hu Hui,Zheng Xiumin.Growth of solutions of linear differential equations with meromorphic coefficients of[p,q]-order[J].Math Commun,2014,19(1):29-42.
[7] Chiang Yikman,Feng Shaoji.On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane[J].Ramanujan J,2008,16(1):105-129.
[8] Laine I,Yang Chungchun.Clunie theorems for difference and q-difference polynomials[J].J London Math Soc,2007,76(3):556-566.
[9] Liu Kai,Qi Xiaoguang.Meromorphic solutions of q-shift difference equations[J].Ann Polon Math,2011,101(3):215-225.
[10] 涂金,郑秀敏.q-平移差分多项式和推广了的q-平移差分方程亚纯解的一些性质[J].数学物理学报,2013,33A(5):951-959.
[11] 王珺,张思奇.一类复差分方程亚纯解的增长性问题[J].复旦学报:自然科学版,2015,54(3):296-300.
[12] Korhonen R.An extension of Picard's theorem for meromorphic function of small hyper-order[J].J Math Anal Appl,2009,357(1):244-253.
[13] Chen Zongxuan,Shon K H.On growth of meromorphic solutions for linear difference equations[J].Abstr Appl Anal,2013,2013,Article ID:619296,1-6.
[14] Zheng Xiumin,Tu Jin.Growth of meromorphic solutions of linear difference equations[J].J Math Anal Appl,2011,384(2):349-356.
[15] Wu Shunzhou,Zheng Xiumin.Growth of meromorphic solutions of complex linear differential-difference equations with coefficients having the same order[J].J Math Research Appl,2014,34(6):683-695.
[16] Cao Tingbin,Xu Junfeng,Chen Zongxuan.On the meromorphic solutions of linear differential equations on the complex plane[J].J Math Anal Appl,2010,364(1):130-142.

相似文献/References:

[1]涂金,刘翠云,徐洪焱.亚纯函数相对于(r)的[p,q]增长级[J].江西师范大学学报(自然科学版),2012,(01):47.
 TU Jin,LIU Cui-yun,XU Hong-yan.Meromorphic Functions of Relative [p,q] Order to (r)[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(04):47.
[2]涂金,魏竞斯,徐洪焱.单位圆内[ p,q]-φ(r)级解析函数与亚纯函数的级与型[J].江西师范大学学报(自然科学版),2015,(02):207.
 TU Jin,WEI Jingsi,XU Hongyan.The Order and Type of Meromorphic Functions and Analytic Functions of [p,q]-φ(r)Order in the Unit Disc[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(04):207.
[3]曾娟娟,刘慧芳.高阶线性微分方程亚纯解的增长性[J].江西师范大学学报(自然科学版),2016,40(03):272.
 ZENG Juanjuan,LIU Huifang.On the Growth of Meromorphic Solutions of Higher Order Linear Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(04):272.
[4]袁文俊,党国强.一类高阶KdV方程的行波复化亚纯解[J].江西师范大学学报(自然科学版),2017,(06):579.
 YUAN Wenjun,DANG Guoqiang.The Traveling Wave Meromorphic Solutions of a Kind of Complex Higher-Order KdV Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(04):579.
[5]涂 金,彭淑凤,饶冬飞.有限对数级亚纯函数与整函数的复合[J].江西师范大学学报(自然科学版),2018,(06):587.[doi:10.16357/j.cnki.issn1000-5862.2018.06.06]
 TU Jin,PENG Shufeng,RAO Dongfei.The Composition of Meromorphic Function and Entire Function of Finite Logarithmic Order[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(04):587.[doi:10.16357/j.cnki.issn1000-5862.2018.06.06]
[6]钟进凤,刘慧芳*.一类非线性差分方程亚纯解的增长性[J].江西师范大学学报(自然科学版),2019,(05):508.[doi:10.16357/j.cnki.issn1000-5862.2019.05.12]
 ZHONG Jinfeng,LIU Huifang*.The Growth of Meromorphic Solutions of Some Type of Nonlinear Difference Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(04):508.[doi:10.16357/j.cnki.issn1000-5862.2019.05.12]
[7]龙见仁,秦大专.关于微分差分多项式零点分布的几个结果[J].江西师范大学学报(自然科学版),2020,(05):510.[doi:10.16357/j.cnki.issn1000-5862.2020.05.11]
 LONG Jianren,QIN Dazhuan.Some Results of Zero Distribution for Differential-Difference Polynomials[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(04):510.[doi:10.16357/j.cnki.issn1000-5862.2020.05.11]

备注/Memo

备注/Memo:
收稿日期:2018-10-16
基金项目:国家自然科学基金(11761035)和江西省自然科学基金(20171BAB201002)资助项目.
通信作者:郑秀敏(1980-),女,江西上饶人,副教授,博士,主要从事复分析研究.E-mail:zhengxiumin2008@sina.com
更新日期/Last Update: 2019-08-10