[1]王 坤,殷明明,俞鸿飞,等.低资源维汉神经机器翻译研究[J].江西师范大学学报(自然科学版),2019,(06):638-642.[doi:10.16357/j.cnki.issn1000-5862.2019.06.13]
 WANG Kun,YIN Mingming,YU Hongfei,et al.The Study on Low-Resource Uygur-Chinese Neural Machine Translation[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(06):638-642.[doi:10.16357/j.cnki.issn1000-5862.2019.06.13]
点击复制

低资源维汉神经机器翻译研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
638-642
栏目:
机器翻译
出版日期:
2019-12-10

文章信息/Info

Title:
The Study on Low-Resource Uygur-Chinese Neural Machine Translation
文章编号:
1000-5862(2019)06-0638-05
作者:
王 坤1殷明明1俞鸿飞1韩 冬1斯拉吉艾合麦提?如则麦麦提2西热艾力?海热拉2刘文其2艾山?吾买尔2李军辉1段湘煜1*张 民1
1.苏州大学计算机科学与技术学院,江苏 苏州 215000; 2.新疆大学信息科学与工程学院,新疆 乌鲁木齐 830046
Author(s):
WANG Kun1YIN Mingming1YU Hongfei1HAN Dong1SILAJIAIHEMAITI?Ruzemaimaiti2XIREAILI?Hairela2LIU Wenqi2AISHAN?Wumaier2LI Junhui1DUAN Xiangyu1*
1.School of Computer Science and Technology,Soochow University,Suzhou Jiangsu 215000,China; 2.College of Information Science and Engineering,Xinjiang University,Urumqi Xinjiang 830046,China
关键词:
神经机器翻译 维汉翻译 低资源机器翻译
Keywords:
neuralmachine translation Uyghur-to-Chinese translation low resource machine translation
分类号:
TP 302.1
DOI:
10.16357/j.cnki.issn1000-5862.2019.06.13
文献标志码:
A
摘要:
该文介绍了在第15届全国机器翻译大会的机器翻译评测项目中苏州大学的参赛情况,主要介绍参评系统使用的神经机器翻译模型基准结构以及采用的策略、方法,并介绍该系统在评测数据上的实验性能.
Abstract:
The submission systems of Soochow University for the 15th CCMT on the task of Low Resource Language Pair Translation are mainly introduced in the paper.The report principally describes the benchmark structure of the neural machine translation model used in the task,fundamental strategies and methods adopted,as well as experimental performance on evaluation data.

参考文献/References:

[1] Wu Felix,Fan Angela,Baevski A,et al.Pay less attention with lightweight and dynamic convolutions[EB/OL].[2019-05-11].https://arxiv.org/abs/1901.10430v1.
[2] Sutskever I,Vinyals O,Le Q V.Sequence to sequence learning with neural networks[EB/OL].[2019-03-16].https://arxiv.org/abs/1409.3215.
[3] Bahdanau D,Cho K,Bengio Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2019-05-11].https://arxiv.org/abs/1409.0473.
[4] Wu Yonghui,Schuster M,Chen Zhifeng,et al.Google's neural machine translation system:bridging the gap between human and machine translation[EB/OL].[2019-04-10].http://arxiv.org/pdf/1609.08144v1.
[5] Gehring J,Auli M,Grangier D,et al.Convolutional sequence to sequence learning[C]∥DoinaPrecup,Yee Whye The.Proceedings of the 34th International Conference on Machine Learning.Sydney,NSW,Australia:PMLR,2017:1243-1252.
[6] Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C]∥Isabelle Guyon,Ulrike von Luxburg,SamyBengio,et al.Advances in neural information processing systems.30:Annual Conference on Neural Information Processing Systems.Long Beach,CA,USA:NIPS,2017:5998-6008.
[7] Wang Yuguang,Cheng Shanbo,Jiang Liyang,et al.Sogou neural machine translation systems for wmt17[EB/OL].[2019-04-18].https://www.aclweb.org/anthology/W17-4742.pdf.
[8] Deng Yongchao,Cheng Shanbo,Lu Jun,et al.Alibaba's neural machine translation systems for wmt18[EB/OL].[2019-04-25].https://dblp.uni-trier.de/pers/hd/c/Cheng:Shanbo.
[9] Sennrich R,Haddow B,Birch A.Neural machine translation of rare words with subword units[EB/OL].[2019-05-11].https://arxiv.org/abs/1508.07909.
[10] Sennrich R,Haddow B,Birch A.Improving neural machine translation models with monolingual data[EB/OL].[2019-05-11].https://arxiv.org/abs/1511.06709.
[11] Edunov S,Ott M,Auli M,et al.Understanding back-translation at scale[EB/OL].[2019-05-11].https://arxiv.org/abs/1808.09381.
[12] Ott M,Edunov S,Baevski A,et al.Fairseq:a fast,extensible toolkit for sequence modeling[EB/OL].[2019-03-25].https://arxiv.org/abs/1904.01038v1.
[13] Kingma D P,Ba J.Adam:a method for stochastic optimization[EB/OL].[2019-05-25].https://arxiv.org/abs/1412.6980.
[14] Papineni K,Roukos S,Ward T,et al.BLEU:a method for automatic evaluation of machine translation[EB/OL].[2019-03-22].https://www.bibsonomy.org/bibtex/20f9b18cd58fb3a930a96fe9fa9f39896/izzy278.
[15] Koehn P,Hoang H,Birch A,et al.Moses:open source toolkit for statistical machine translation[EB/OL].[2019-03-29].http://cs.jhu.edu/~ccb/publications/jhu-summer-workshop-final-report.pdf.
[16] Luo Ruixuan,Xu Jingjing,Zhang Yi,et al.PKUSEG:a toolkit for multi-domain Chinese word segmentation[EB/OL].[2019-03-29].https://www.researchgate.net/publication/334082086_PKUSEG_A_Toolkit_for_Multi-Domain_Chinese_Word_Segmentation.

相似文献/References:

[1]赵 阳,周 龙,王 迁,等.民汉稀缺资源神经机器翻译技术研究[J].江西师范大学学报(自然科学版),2019,(06):630.[doi:10.16357/j.cnki.issn1000-5862.2019.06.12]
 ZHAO Yang,ZHOU Long,WANG Qian,et al.The Study on Ethnic-to-Chinese Scare-Resource Neural Machine Translation[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(06):630.[doi:10.16357/j.cnki.issn1000-5862.2019.06.12]
[2]谷舒豪,单 勇,谢婉莹,等.基于数据增强及领域适应的神经机器翻译技术[J].江西师范大学学报(自然科学版),2019,(06):643.[doi:10.16357/j.cnki.issn1000-5862.2019.06.14]
 GU Shuhao,SHAN Yong,XIE Wanying,et al.The Neural Machine Translation Based on Data Augmentation and Domain Adaptation Technology[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(06):643.[doi:10.16357/j.cnki.issn1000-5862.2019.06.14]
[3]刘俊鹏,宋鼎新,张一鸣,等.多种数据泛化策略融合的神经机器翻译系统[J].江西师范大学学报(自然科学版),2020,(01):39.[doi:10.16357/j.cnki.issn1000-5862.2020.01.07]
 LIU Junpeng,SONG Dingxin,ZHANG Yiming,et al.The Neural Machine Translation System of Multiple Data Generalization Fusion[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(06):39.[doi:10.16357/j.cnki.issn1000-5862.2020.01.07]

备注/Memo

备注/Memo:
收稿日期:2019-08-11
基金项目:国家重点研发计划“政府间国际科技创新合作”重点专项(2016YFE0132100),国家自然科学基金(61673289,61662077)和新疆多语种信息技术实验室开放课题(2016D03023)资助项目.
通信作者:段湘煜(1976-),男,湖南洞口人,教授,博士,主要从事机器翻译、自然语言处理研究.E-mail:xiangyuduan@suda.edu.cn
更新日期/Last Update: 2019-12-10