[1]开依沙尔?热合曼.一类求解非线性方程的3阶收敛迭代格式[J].江西师范大学学报(自然科学版),2020,(02):206-208.[doi:10.16357/j.cnki.issn1000-5862.2020.02.17]
 KAYSAR Rahman.One Class of Third-Order Iteration Methods for Solving Non-Linear Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(02):206-208.[doi:10.16357/j.cnki.issn1000-5862.2020.02.17]
点击复制

一类求解非线性方程的3阶收敛迭代格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
206-208
栏目:
数学与应用数学
出版日期:
2020-04-10

文章信息/Info

Title:
One Class of Third-Order Iteration Methods for Solving Non-Linear Equations
文章编号:
1000-5862(2020)02-0206-03
作者:
开依沙尔?热合曼12
1.新疆大学数学与系统科学学院,新疆 乌鲁木齐 830046; 2.新疆大学数学物理研究所,新疆 乌鲁木齐 830046
Author(s):
KAYSAR Rahman12
1.College of Mathematics and System Science,Xinjiang University,Urumqi Xinjiang 830046,China; 2.Institute of Mathematical Physics,Xinjiang University,Urumqi Xinjiang 830046,China
关键词:
非线性方程 牛顿方法 3阶收敛 迭代方法
Keywords:
nonlinear equations Newton's method third-order convergence iterative methods
分类号:
O 241.7
DOI:
10.16357/j.cnki.issn1000-5862.2020.02.17
文献标志码:
A
摘要:
该文提出了求非线性方程根的3阶收敛的牛顿类迭代方法,并对收敛性进行了证明.该牛顿类迭代方法有效地克服了传统的牛顿迭代方法在目标函数的1阶导数等于0或者接近于0时失效的缺点.通过数值例子来验证该类迭代格式的有效性.
Abstract:
In this paper,one class of modified Newton methods for solving non-linear equations is presented.Analysis of convergence shows that the new method is cubically convergent.The main advantage of this method is that it can overcome the shortcoming of Newton's method which the derivative of the function is either zero or very small of the required root.The effectiveness of the present method is demonstrated by some numerical examples.

参考文献/References:

[1] Burden R L,Faires J D.Numerical analysis[M].Seventh Edition.Beijing:Higher Education Press,2001.
[2] 李庆扬,王能超,易大义.数值分析[M].4版.北京:清华大学出版社,2001.
[3] 冯果忱,黄明游,刘停战,等.数值分析:上册[M].北京:高等教育出版社,2007.[4] 吴新元.对牛顿迭代法的一个重要修改[J].应用数学与力学,1999,20(8):863-866.
[5] Weerakoon S,Fernando T G I.A variant of Newton's method with accelerated third-order convergence[J].Applied Mathematics Letters,2000,13(8):87-93.
[6] Özban A Y.Some new variants of Newton's method[J].Applied Mathematics Letters,2004,17(6):677-682.
[7] Frontini M,Sormani E.Some variant of Newton's method with third-order convergence[J].Applied Mathematics and Computation,2003,140(2/3):419-426.
[8] Homeier H H H.On Newton-type methods with cubic convergence[J].Journal of Computational and Applied Mathematics,2005,176(2):425-432.
[9] Lukic' T, Ralevic' N M.Geometric mean Newton's method for simple and multiple roots[J].Applied Mathematics Letters,2008,21(1):30-36.
[10] 危地,吴根秀.非线性方程求解的新算法[J].江西师范大学学报:自然科学版,2006,30(2):190-192.
[11] 艾合麦提尼亚孜?艾合麦提江,开依沙尔?热合曼.非线性方程求根的平方根牛顿方法[J].佳木斯大学学报:自然科学版,2011,29(2):271-273.
[12] 夏红卫,文传军.一般非线性约束优化问题的信赖域法[J].江西师范大学学报:自然科学版,2012,36(3):253-256.
[13] 开依沙尔?热合曼,热合买提江?依明江,买买提明?艾尼.求解非线性方程根4阶收敛的迭代格式[J].数学的实践与认识,2013,43(7):236-240.

备注/Memo

备注/Memo:
收稿日期:2019-06-12
基金项目:国家自然科学基金(11461069)和新疆大学博士启动基金(BS150204)资助项目.
作者简介:开依沙尔?热合曼(1978-),男,新疆库车人,副教授,博士,主要从事数值计算及工程优化设计研究.E-mail:kaysar2014@sina.com
更新日期/Last Update: 2020-04-10