[1]王海龙,郭翠花*.2m阶Schrdinger方程组在实指数Sobolev 空间中的整体小解[J].江西师范大学学报(自然科学版),2020,(03):263-268.[doi:10.16357/j.cnki.issn1000-5862.2020.03.09]
 WANG Hailong,GUO Cuihua*.The Small Global Solution for the Coupled 2mth-order Nonlinear System on Real Index Sobolev Space[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(03):263-268.[doi:10.16357/j.cnki.issn1000-5862.2020.03.09]
点击复制

2m阶Schrödinger方程组在实指数Sobolev 空间中的整体小解()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
263-268
栏目:
数学与应用数学
出版日期:
2020-06-10

文章信息/Info

Title:
The Small Global Solution for the Coupled 2mth-order Nonlinear System on Real Index Sobolev Space
文章编号:
1000-5862(2020)03-0263-06
作者:
王海龙郭翠花*
山西大学数学科学学院,山西 太原 030006
Author(s):
WANG HailongGUO Cuihua*
School of Mathematical Sciences,Shanxi University,Taiyuan Shanxi 030006,China
关键词:
2m阶耦合Schrödinger方程组 实指数Sobolev空间 整体小解 Banach不动点原理
Keywords:
coupled 2mth-order Schrödinger system real index Sobolev space small global solution Banach fixed point theorem
分类号:
O 175
DOI:
10.16357/j.cnki.issn1000-5862.2020.03.09
文献标志码:
A
摘要:
Schrödinger型方程是一类非常重要的发展方程.通过应用Banach不动点定理,该文研究了在任意维数空间中2m阶非线性Schrödinger方程组{iut+(-Δ)mu=a|u|α-1u|v|β+1,x∈Rn,t≥0,ivt+(-Δ)mv=b|u|α+1|v|β-1v,x∈Rn,t≥0,u(x,0)=φ(x),v(x,0)=ψ(x),x∈Rn在实指数Sobolev空间Hsp1(Rn)×Hsp2(Rn)中的整体小解.
Abstract:
Schrödinger type equation plays an important role in evolution equations.By using Banach fixed point theorem, the small global solutions of the following 2mth-order nonlinear Schrödinger system{iut+(-Δ)mu=a|u|α-1u|v|β+1,x∈Rn,t≥0,ivt+(-Δ)mv=b|u|α+1|v|β-1v,x∈Rn,t≥0,u(x,0)=φ(x),v(x,0)=ψ(x),x∈Rnin arbitrary dimensions are studied on the Sobolev space Hsp1(Rn)×Hsp2(Rn).

参考文献/References:

[1] Karpman V I.Stabilization of soliton instability by higher-order dispersion:fourth-order nonlinear Schrödinger-type equations[J].Phys Rev,1996,53(2):1336-1339.
[2] Miao CHANGXING.The global strong solution for Schrödinger equation of higher order[J].Acta Math Appl Sinnica,1996,19(2):213-221.
[3] Saanouni T.Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity[J].Commun Pure Appl Anal,2014,13(1):273-291.
[4] Saanouni T.A note on the critical nonlinear high-order Schrödinger equation[J].J Math Anal Appl,2017,451(2):736-756.
[5] Hayata K,Koshiba M.Multidimensional solItions in cubic nonlinear media[J].Optics Letters,1994,19(21):1717-1719.
[6] Radhakrishnan R,Sahadevan R,Lakshmana M.Integrability and singularity structure of coupled nonlinear Schrödinger equations[J].Chaos,Solitions and Fractals,1995,5(12):2315-2327.
[7] Newboult G K,Parker D F,Faulkner T R.Coupled nonlinear Schrödinger equations arising in the study of monomode step-index optical fiber[J].J Math Phys,1989,30(4):930-936.
[8] Wadati M,Lizuka T,Hisakado M.A coupled nonlinear Schrödinger equations and optical solitions[J].J Phys Soc Japan,1992,61(7):2241-2245.
[9] 甘在会,张健.一类耦合非线性Schrödinger方程组的孤立子波[J].四川大学学报:自然科学版,2003,40(2):234-239.
[10] 甘在会,谭良.2维空间中耦合非线性Schrödinger方程组的孤立子波[J].四川师范大学学报:自然科学版,2004,27(1):14-17.
[11] Yu Fajun,Li Li.Inverse scattering transformation and soliton stability for a nonlinear Gross-Pitaevskii equation with external potentials[J].Appl Math Lett,2019,91:41-47.
[12] Yu Fajun.Localized analytical solutions and numerically stabilities of generalized Gross-Pitaevskii(GP(p,q))equation with specific external potentials[J].Appl Math Lett,2018,85:1-7.
[13] 叶耀军,甘在会,汪松玉.3维空间中耦合非线性Schrödinger方程组的整体解[J].四川师范大学学报:自然科学版,2006,29(5):534-538.
[14] 郭翠花,王海龙.n维空间耦合高阶非线性Schrödinger方程组的整体解[J].山西大学学报:自然科学版,doi:10.13451/j.sxu.ns.2019074.
[15] 郭翠花.Schrödinger型非线性偏微分方程初值问题在Sobolev空间中的适定性[D].广州:中山大学,2006.
[16] Christ F M,Weinstein M I.Dispersive of small amplitude solutions of the generalized Korteweg-de Vries equation[J].J Funct Anal,1991,100(1):87-109.
[17] Cui Shangbin,Guo Cuihua.Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces Hs(Rn)and applications[J].Nonlinear Anal,2007,67(3):687-707.

备注/Memo

备注/Memo:
收稿日期:2019-09-10
基金项目:国家自然科学基金(61503230)资助项目.
通信作者:郭翠花(1972-),女,山西平遥人,教授,博士,主要从事非线性偏微分方程及其应用研究.E-mail:gchzjq@sxu.edu.cn
更新日期/Last Update: 2020-06-10