参考文献/References:
[1] Karpman V I.Stabilization of soliton instability by higher-order dispersion:fourth-order nonlinear Schrödinger-type equations[J].Phys Rev,1996,53(2):1336-1339.
[2] Miao CHANGXING.The global strong solution for Schrödinger equation of higher order[J].Acta Math Appl Sinnica,1996,19(2):213-221.
[3] Saanouni T.Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity[J].Commun Pure Appl Anal,2014,13(1):273-291.
[4] Saanouni T.A note on the critical nonlinear high-order Schrödinger equation[J].J Math Anal Appl,2017,451(2):736-756.
[5] Hayata K,Koshiba M.Multidimensional solItions in cubic nonlinear media[J].Optics Letters,1994,19(21):1717-1719.
[6] Radhakrishnan R,Sahadevan R,Lakshmana M.Integrability and singularity structure of coupled nonlinear Schrödinger equations[J].Chaos,Solitions and Fractals,1995,5(12):2315-2327.
[7] Newboult G K,Parker D F,Faulkner T R.Coupled nonlinear Schrödinger equations arising in the study of monomode step-index optical fiber[J].J Math Phys,1989,30(4):930-936.
[8] Wadati M,Lizuka T,Hisakado M.A coupled nonlinear Schrödinger equations and optical solitions[J].J Phys Soc Japan,1992,61(7):2241-2245.
[9] 甘在会,张健.一类耦合非线性Schrödinger方程组的孤立子波[J].四川大学学报:自然科学版,2003,40(2):234-239.
[10] 甘在会,谭良.2维空间中耦合非线性Schrödinger方程组的孤立子波[J].四川师范大学学报:自然科学版,2004,27(1):14-17.
[11] Yu Fajun,Li Li.Inverse scattering transformation and soliton stability for a nonlinear Gross-Pitaevskii equation with external potentials[J].Appl Math Lett,2019,91:41-47.
[12] Yu Fajun.Localized analytical solutions and numerically stabilities of generalized Gross-Pitaevskii(GP(p,q))equation with specific external potentials[J].Appl Math Lett,2018,85:1-7.
[13] 叶耀军,甘在会,汪松玉.3维空间中耦合非线性Schrödinger方程组的整体解[J].四川师范大学学报:自然科学版,2006,29(5):534-538.
[14] 郭翠花,王海龙.n维空间耦合高阶非线性Schrödinger方程组的整体解[J].山西大学学报:自然科学版,doi:10.13451/j.sxu.ns.2019074.
[15] 郭翠花.Schrödinger型非线性偏微分方程初值问题在Sobolev空间中的适定性[D].广州:中山大学,2006.
[16] Christ F M,Weinstein M I.Dispersive of small amplitude solutions of the generalized Korteweg-de Vries equation[J].J Funct Anal,1991,100(1):87-109.
[17] Cui Shangbin,Guo Cuihua.Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces Hs(Rn)and applications[J].Nonlinear Anal,2007,67(3):687-707.