参考文献/References:
[1] Freedman H I.Deterministic mathematical models in population ecology[M].New York:Marcel Dekker Incorporate,1980.
[2] 杨琪瑜.单种群生长的广义Logistic模型中参数的一种估值方法[J].生物数学学报,1997,12(4):316-320.
[3] 王寿松.单种群生长的广义Logistic模型[J].生物数学学报,1990,7(1):23-27.
[4] Lin Ke,Mu Chunlai,Zhong Hua.A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions[J].J Math Anal Appl,2018,464(1):435-455.
[5] Lin Ke,Mu Chunlai.Global dynamics in a fully parabolic chemotaxis system with logistic source[J].Discrete and Continuous Dynamical Systems,2016,36(9):5025-5046.
[6] Viglialoro G.Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source[J].J Math Anal Appl,2016,439(1):197-212.
[7] Liu Ling,Zheng Jiashan.Global existence and boundedness of solution of a parabolic-parabolic-ode chemotaxis-haptotaxis model with(generalized)logistic source[J].Discrete and Continuous Dynamical Systems-B,2019,24(7):3357-3377.
[8] Tao Youshan.Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source[J].J Math Anal Appl,2009,354(1):60-69.
[9] Tello J I,Winkler M.A chemotaxis system with logistic source[J].Communications in Partial Differential Equations,2007,32(6):849-877.
[10] Du Yihong,Lin Zhigui.Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[J].SIAM Journal on Mathematical Analysis,2010,42(1):377-405.
[11] 林支桂.数学生态学导引[M].北京:科学出版社,2013:145-148.
[12] 唐秋林.增长区域上具扩散的Logistic方程解的渐近性[D].扬州:扬州大学,2011.
[13] Jiang Danhua,Wang Zhicheng.The diffusive logistic equation on periodically evolving domains[J].J Math Anal Appl,2018,458(1):93-111.
[14] 孙素梅,孟悦,朱家桢,等.周期演化区域上的Logistic捕获模型的动力学分析[J].生物数学学报,2018(1):84-90.
[15] Hess P.Periodic-parabolic boundary value problems and positivity[M].Halow,UK:Longman Scientific and Technical,1991.
[16] Kato T.Perturbation theory for linear operators[M].New York:Springer-Verlag,1966.