[1]傅 韬,谭德坤*,付雪峰,等.基于多源数据融合的突发水污染事故可靠预警方法[J].江西师范大学学报(自然科学版),2020,(04):394-402.[doi:10.16357/j.cnki.issn1000-5862.2020.04.11]
 FU Tao,TAN Dekun*,FU Xuefeng,et al.The Reliable Warning Method for Sudden Water Pollution Based on Multi-Source Data Fusion[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(04):394-402.[doi:10.16357/j.cnki.issn1000-5862.2020.04.11]
点击复制

基于多源数据融合的突发水污染事故可靠预警方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
394-402
栏目:
信息科学与技术
出版日期:
2020-08-10

文章信息/Info

Title:
The Reliable Warning Method for Sudden Water Pollution Based on Multi-Source Data Fusion
文章编号:
1000-5862(2020)04-0394-09
作者:
傅 韬1谭德坤2*付雪峰2涂振宇2王 晖2
1.江西省防汛信息中心, 江西 南昌 330009; 2.南昌工程学院江西省水信息协同感知与智能处理重点实验室, 江西 南昌 330099
Author(s):
FU Tao1TAN Dekun2*FU Xuefeng2TU Zhenyu2WANG Hui2
1.Jiangxi Provincial Flood Control and Information Center,Nanchang Jiangxi 330009,China; 2.Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Nanchang Jiangxi 330099,China
关键词:
突发水污染事故 异常数据 D-S理论 多源数据融合 预测预警
Keywords:
sudden water pollution abnormal data D-S theory multi-source data fusion forecasting and warning
分类号:
TP 18; TP 391
DOI:
10.16357/j.cnki.issn1000-5862.2020.04.11
文献标志码:
A
摘要:
在突发水污染事故自动监测领域中,传感器节点监测数据的异常是影响自动监测系统预警可靠性的重要原因.考虑到多传感器信息之间的互补性和相关性,该文提出了一种基于多源数据融合的突发水污染事故可靠预警方法.基于改进的D-S证据理论,利用综合权重对节点证据进行加权修正,并用D-S融合规则对多源数据进行两两融合,最终根据融合结果对突发水污染事故进行预警决策.案例分析及实验结果表明:与传统方法相比,该方法能得到可靠度更高、聚焦性更好的预警结论.
Abstract:
In the field of automatic monitoring of sudden water pollution accidents,the abnormal data caused by sensor nodes is an important reason to affect the warning reliability for automatic monitoring system.Considering the complementarity and correlation between multi-sensor information, a new reliable warning method for accidental water pollution based on multi-source data fusion is presented in this paper.The comprehensive weight is used to modify the original evidences based on the improved Dempster-Shafer(D-S)evidence theory, then the multi-source evidences are fused by utilizing the combination rule of D-S theory,and finally the early warning decision for sudden water pollution accidents can be made according to the fusion result.Compared with the traditional methods,the case analysis and experimental results show that the proposed method can make the warning decisions with higher credibility and better focus.

参考文献/References:

[1] 姜继平,王鹏,刘洁,等.突发水污染预警应急响应研究与实践的方法学辨析[J].环境科学学报,2017,37(9):3621-3628.
[2] 彭雪非.突发水污染事故的预警与应急监测技术进展[J].安徽农业科学,2014,42(20):6653-6655.
[3] 施建强.水环境实时自动监测系统的设计与实现[J].计算机工程与应用,2004,40(13):222-226.
[4] 袁维林.水质自动监测技术在水环境保护中的应用[J].低碳世界,2016(5):2-3.
[5] 蔡世清,周杰.基于支持向量机的多传感器数据融合算法[J].计算机工程与设计,2016,37(5):1352-1356.
[6] 彭能松,张维纬,张育钊,等.基于时间序列数据的无线传感器网络的异常检测方法[J].传感技术学报,2018,31(4):595-601.
[7] Cauteruccio F,Fortino G,Guerrieri A,et al.Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance[J].Information Fusion,2019,52:13-30.
[8] 胡石,李兆辉,卢文伟,等.基于神经网络的无线传感器网络异常数据检测方法[J].计算机科学,2014,41(S2):208-211.
[9] 史斌,姜继平,王鹏.基于高频在线水质数据异常的突发污染预警[J].中国环境科学,2017,37(11):4394-4400.
[10] 靳春玲,王运鑫,贡力.基于模糊层次评价法的黄河兰州段突发水污染风险分析[J].安全与环境学报,2018,18(1):363-368.
[11] 严志军,陶洋.基于证据距离和不确定度的冲突数据融合算法[J].计算机工程与应用,2018,54(10):54-58,104.
[12] 李涛,沈江.基于多传感器信息融合的自然灾害预警模型研究[J].电子科技大学学报:社科版,2015,17(1):34-38.
[13] Dempster A P.Upper and lower probabilities induced by a multi-valued mapping[J].Annual Math Statist,1967,38(4):325-339.
[14] Shafer G.A mathematical theory of evidence[M].Princeton:Princeton University Press,1976.
[15] Zadeh L.A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination[J].AI Magazine,1986,7(1):85-90.
[16] Murphy C K.Combining belief function when evidence conflicts[J].Decision Support Systems,2000,29:1-9.
[17] Han Deqiang,DengYong,Liu Qi.Combining belief functions based on distance of evidence[J].Decision Support Systems,2004,38(3):489-493.
[18] Jousselme A L,Grenier D,BosséÉ.A new distance between two bodies of evidence[J].Information Fusion,2001,2(2):91-101.
[19] 国家环境保护总局科技标准司.地表水环境质量标准:GB 3838—2002[S].北京:中国环境科学出版社,2002.
[20] 游猛.典型城市污水处理工艺中多种生物毒性检测及水质安全评价[D].西安:西安建筑科技大学,2017.
[21] 曹伟,秦延文,张雷,等.化工企业废水污染源在线监控预警阈值确定方法研究[J].环境科学研究,2019,32(3):1-15.
[22] 马自伟,吴佳宁,陈明,等.地表水中氨氮、总氮和总磷的污染程度及相关性分析[J].广州化学,2017,42(5):7-11,31.
[23] 尚小龙,余厚平,陈朴青,等.乐安河-鄱阳湖段水环境因子对重金属Cu、Pb、Cd迁移转化的影响[J].江西师范大学学报:自然科学版,2014,38(6):650-655.
[24] 熊宇奇.典型村镇水污染指标相关性分析[D].长沙:湖南大学,2014.
[25] 李真.海洋疏浚物生物毒性检测技术的研究[D].青岛:中国海洋大学,2014.
[26] Mowat F S,Bundy K J.Experimental and mathematical computational assessment of the acute toxicity of chemical mixtures from the Microtox assay[J].Advances in Environmental Research,2002,6(4):547-558.

备注/Memo

备注/Memo:
收稿日期:2019-11-27
基金项目:国家自然科学基金(61762063),江西省自然科学基金(20171BAB202024),江西省水利厅科技课题(KT201639),江西省科技厅重点研发课题(20151BBE50077)和江西省教育厅科技课题(GJJ170991,GJJ190958)资助项目.
通信作者:谭德坤(1973-),男,重庆开县人,副教授,博士,主要从事数据融合、智能优化算法研究.E-mail:dktan@nit.edu.cn
更新日期/Last Update: 2020-08-10