参考文献/References:
[1] Lakshmikantham V,Vatsala A S.Basic theory of fractional differential equations[J].Nonlinear Analysis:Theory,Methods and Applications,2008,69(8):2677-2682.
[2] Lakshmikantham V,Vatsala A S.General uniqueness and monotone iterative technique for fractional differential equations[J].Applied Mathematics Letters,2008,21(8):828-834.
[3] Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations[M].Amsterdam:Elsevier Science,2006.
[4] Ahmad B,Nieto J J,Alsaedi A,et al.A study of nonlinear Langevin equation involving two fractional orders in different intervals[J].Nonlinear Analysis:Real World Applications,2012,13(2):599-606.
[5] Leszczynski J S,Blaszczyk T.Modeling the transition between stable and unstable operation while emptying a silo[J].Granular Matter,2011,13(4):429-438.
[6] Szymanek E.The application of fractional order differential calculus for the description of temperature profiles in a granular layer[M]∥Mitkowski W,Kacprzyk J,Baranowski J.Advances in the Theory and Applications of Non-Integer Order Systems.Switzerland:Springer International Publishing,2013(257):243-248.
[7] Podlubny I.Fractional differential equations[M].San Diego:Academic Press,1999.
[8] 苏新卫,穆晓霞.分数阶微分方程边值问题解的存在性[J].河南师范大学学报:自然科学版,2008,36(1):9-12.
[9] 梁秋燕.Banach空间分数阶微分方程边值问题解的存在性[J].郑州大学学报:理学版,2013,45(3):32-36.
[10] Torres C.Mountain pass solution for a fractional boundary value problem[J].Journal of Fractional Calculus and Applications,2014,5(1):1-10.
[11] Jiao Feng,Zhou Yong.Existence of solutions for a class of fractional boundary value problems via critical point theory[J].Computers and Mathematics with Applications,2011,62(3):1181-1199.
[12] Jiao Feng,Zhou Yong.Existence results for fractional boundary value problem via critical point theory[J].International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,2012,22(4):1250086.
[13] Zhang Ziheng.Solutions for a class of fractional boundary value probem with mixed nonlinarities[J].Bull Korean Math Soc,2016,53(5):1585-1596.
[14] Zhang Ziheng,Li Jing.Variational approach to solutions for a class of fractional boundary value problems[J].Electronic Journal of Qualitative Theory of Differential Equations,2015(11):1-10.
[15] Chen Jing,Tang Xianhua.Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory[J].Abstract and Applied Analysis,2012,2012(1):185-195.
[16] 彭思梦.几类分数阶微分包含边值问题解的存在性研究[D].吉首:吉首大学,2016.
[17] Bonanno G.A critical point theorem via the Ekeland variational principle[J].Nonlinear Analysis:Theory,Methods and Applications,2012,75(5):2992-3007.
[18] Bai Chuanzi.Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem[J].Electronic Journal of Differential Equations,2013,2013(136):1-12.
[19] Kajikiya R.A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations[J].Journal of Functional Analysis,2005,225(2):352-370.
[20] Zhang Qingye,Homoclinic solutions for a class of second order Hamiltonian systems[J].Math Nachr,2015,288(8/9):1073-1081.
相似文献/References:
[1]张倩,韩惠丽,张盼盼.基于有理Haar小波求解分数阶第2类Fredholm积分方程[J].江西师范大学学报(自然科学版),2014,(01):47.
ZHANG Qian,HAN Hui-li,ZHANG Pan-pan.Numerical Solution of Fractional Fredhlom Integral Equation of the Second Kind Based on the Rationalized Haar Wavelet[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(05):47.
[2]陆万春,漆勇方*,李良松.局部分数阶微分系统的李雅普诺夫不等式研究[J].江西师范大学学报(自然科学版),2018,(06):592.[doi:10.16357/j.cnki.issn1000-5862.2018.06.07]
LU Wanchun,QI Yongfang*,LI Liangsong.The Lyapunov-Type Inequality for Local Fractional Differential Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(05):592.[doi:10.16357/j.cnki.issn1000-5862.2018.06.07]