[1]何 仙,张清业*.一类分数阶边值问题无穷多解的存在性[J].江西师范大学学报(自然科学版),2020,(05):515-520.[doi:10.16357/j.cnki.issn1000-5862.2020.05.12]
 HE Xian,ZHANG Qingye*.The Existence of Infinitely Many Solutions for a Class of Fractional Boundary Value Problems[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(05):515-520.[doi:10.16357/j.cnki.issn1000-5862.2020.05.12]
点击复制

一类分数阶边值问题无穷多解的存在性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
515-520
栏目:
数学与应用数学
出版日期:
2020-10-20

文章信息/Info

Title:
The Existence of Infinitely Many Solutions for a Class of Fractional Boundary Value Problems
文章编号:
1000-5862(2020)05-0515-06
作者:
何 仙张清业*
江西师范大学数学与统计学院,江西 南昌 330022
Author(s):
HE XianZHANG Qingye*
School of Mathematics and Statistics,Jiangxi Normal University,Nanchang Jiangxi 30022,China
关键词:
分数阶 边值问题 变分法 对称山路引理
Keywords:
fractional boundary value problem variational method symmetric mountain pass lemma
分类号:
O 175.8
DOI:
10.16357/j.cnki.issn1000-5862.2020.05.12
文献标志码:
A
摘要:
运用变分法研究了一类非线性项仅在原点附近有定义的分数阶边值问题解的多重性问题,主要利用一种变化形式的对称山路引理证明了其在原点附近无穷多解的存在性,该结果丰富和完善了已有的相关结果.
Abstract:
The multiplicity of solutions for a class of fractional boundary value problems is studied in the paper by variational methods,where the nonlinearity is only defined near the origin.A variant of symmetric mountain pass lemma is mainly used to prove the existence of infinitely many solutions for them near the origin,which significantly enriches and improves the related results in the literature.

参考文献/References:

[1] Lakshmikantham V,Vatsala A S.Basic theory of fractional differential equations[J].Nonlinear Analysis:Theory,Methods and Applications,2008,69(8):2677-2682.
[2] Lakshmikantham V,Vatsala A S.General uniqueness and monotone iterative technique for fractional differential equations[J].Applied Mathematics Letters,2008,21(8):828-834.
[3] Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations[M].Amsterdam:Elsevier Science,2006.
[4] Ahmad B,Nieto J J,Alsaedi A,et al.A study of nonlinear Langevin equation involving two fractional orders in different intervals[J].Nonlinear Analysis:Real World Applications,2012,13(2):599-606.
[5] Leszczynski J S,Blaszczyk T.Modeling the transition between stable and unstable operation while emptying a silo[J].Granular Matter,2011,13(4):429-438.
[6] Szymanek E.The application of fractional order differential calculus for the description of temperature profiles in a granular layer[M]∥Mitkowski W,Kacprzyk J,Baranowski J.Advances in the Theory and Applications of Non-Integer Order Systems.Switzerland:Springer International Publishing,2013(257):243-248.
[7] Podlubny I.Fractional differential equations[M].San Diego:Academic Press,1999.
[8] 苏新卫,穆晓霞.分数阶微分方程边值问题解的存在性[J].河南师范大学学报:自然科学版,2008,36(1):9-12.
[9] 梁秋燕.Banach空间分数阶微分方程边值问题解的存在性[J].郑州大学学报:理学版,2013,45(3):32-36.
[10] Torres C.Mountain pass solution for a fractional boundary value problem[J].Journal of Fractional Calculus and Applications,2014,5(1):1-10.
[11] Jiao Feng,Zhou Yong.Existence of solutions for a class of fractional boundary value problems via critical point theory[J].Computers and Mathematics with Applications,2011,62(3):1181-1199.
[12] Jiao Feng,Zhou Yong.Existence results for fractional boundary value problem via critical point theory[J].International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,2012,22(4):1250086.
[13] Zhang Ziheng.Solutions for a class of fractional boundary value probem with mixed nonlinarities[J].Bull Korean Math Soc,2016,53(5):1585-1596.
[14] Zhang Ziheng,Li Jing.Variational approach to solutions for a class of fractional boundary value problems[J].Electronic Journal of Qualitative Theory of Differential Equations,2015(11):1-10.
[15] Chen Jing,Tang Xianhua.Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory[J].Abstract and Applied Analysis,2012,2012(1):185-195.
[16] 彭思梦.几类分数阶微分包含边值问题解的存在性研究[D].吉首:吉首大学,2016.
[17] Bonanno G.A critical point theorem via the Ekeland variational principle[J].Nonlinear Analysis:Theory,Methods and Applications,2012,75(5):2992-3007.
[18] Bai Chuanzi.Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem[J].Electronic Journal of Differential Equations,2013,2013(136):1-12.
[19] Kajikiya R.A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations[J].Journal of Functional Analysis,2005,225(2):352-370.
[20] Zhang Qingye,Homoclinic solutions for a class of second order Hamiltonian systems[J].Math Nachr,2015,288(8/9):1073-1081.

相似文献/References:

[1]张倩,韩惠丽,张盼盼.基于有理Haar小波求解分数阶第2类Fredholm积分方程[J].江西师范大学学报(自然科学版),2014,(01):47.
 ZHANG Qian,HAN Hui-li,ZHANG Pan-pan.Numerical Solution of Fractional Fredhlom Integral Equation of the Second Kind Based on the Rationalized Haar Wavelet[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(05):47.
[2]陆万春,漆勇方*,李良松.局部分数阶微分系统的李雅普诺夫不等式研究[J].江西师范大学学报(自然科学版),2018,(06):592.[doi:10.16357/j.cnki.issn1000-5862.2018.06.07]
 LU Wanchun,QI Yongfang*,LI Liangsong.The Lyapunov-Type Inequality for Local Fractional Differential Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(05):592.[doi:10.16357/j.cnki.issn1000-5862.2018.06.07]

备注/Memo

备注/Memo:
收稿日期:2020-01-26
基金项目:国家自然科学基金(11671179,11201196)和江西省自然科学基金(20171BAB211002)资助项目.
通信作者:张清业(1982-),男,湖北洪湖人,副教授,博士,主要从事哈密顿系统的研究.E-mail:zhangqy@jxnu.edu.cn
更新日期/Last Update: 2020-10-20