[1]吴 琦,高岳林*.基于改进粒子群优化的投资组合模型研究[J].江西师范大学学报(自然科学版),2020,(05):521-529.[doi:10.16357/j.cnki.issn1000-5862.2020.05.13]
 WU Qi,GAO Yuelin*.The Study on Portfolio Model Based on Improved Particle Swarm Optimization[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(05):521-529.[doi:10.16357/j.cnki.issn1000-5862.2020.05.13]
点击复制

基于改进粒子群优化的投资组合模型研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
521-529
栏目:
数学与应用数学
出版日期:
2020-10-20

文章信息/Info

Title:
The Study on Portfolio Model Based on Improved Particle Swarm Optimization
文章编号:
1000-5862(2020)05-0521-09
作者:
吴 琦1高岳林12*
1.北方民族大学数学与信息科学学院,宁夏 银川 750021; 2.北方民族大学宁夏科学计算与智能信息处理协同创新中心,宁夏 银川 750021
Author(s):
WU Qi1GAO Yuelin12*
1.Research Institute of Information and System Computation Science,North Minzu University,Yinchuan Ningxia 750021,China; 2.Ningxia Scientific Computing and Intelligent Information Processing Co-Innovation Center,Yinchuan Ningxia 750021,China
关键词:
投资组合模型 风险态度 背景风险 交易费用 粒子群算法
Keywords:
portfolio model risk attitude background risk transaction cost particle swarm optimization
分类号:
O 224; F 830.59
DOI:
10.16357/j.cnki.issn1000-5862.2020.05.13
文献标志码:
A
摘要:
金融市场中投资者在应对不确定性风险的同时还要面临自身因素所导致的背景风险,在投资过程中存在许多不确定因素,而这些因素往往是模糊的.该文利用模糊集和可能性理论建立不同风险态度下含有背景风险的模糊不确定投资组合; 同时考虑投资者对风险的喜好、交易费用等,建立了不同风险态度下含有背景风险和交易费用的可能性均值-下半方差模型,并提出一种求解该模型的带有选择规则的粒子群算法.以上海证券交易所180指数随机选取的8支证券为例组成投资组合,给出数值算例,数值实验仿真结果表明了所提出的模型和方法的有效性、可靠性.
Abstract:
In the financial market,while dealing with the uncertainty risk,investors have to face the background risk caused by their own factors.There are many uncertain factors in the investment process,and these factors are often vague.Therefore,it uses fuzzy set and possibility theory to establish fuzzy uncertain portfolio with background risk under different risk attitudes.At the same time,considering investors' preference for risk,transaction cost and so on,a mean-lower variance model with background risk and transaction cost under different risk attitudes is established.A particle swarm optimization algorithm with selection rules for solving the model is proposed.A numerical example is given based on the portfolio of eight securities randomly selected by the 180 index of Shanghai Stock Exchange.The numerical simulation results show the validity and reliability of the model and the method.

参考文献/References:

[1] Markowitz H.Portfolio selection[J].The Journal of Finance,1952,7(1):77-91.
[2] Markovitz H.Portfolio selection:efficient diversification of investments[M].New York:John Wiley,1959.
[3] Cui Xiangyu,Li Xun,Li Duan,et al.Time consistent behavioral portfolio policy for dynamic mean-variance formulation[J].Journal of the Operational Research Society,2017,68(12):1647-1660.
[4] Guijarro F.A similarity measure for the cardinality constrained frontier in the mean-variance optimization model[J].Journal of the Operational Research Society,2018,69(6):928-945.
[5] Guo Xu,Chan R H,Wong Wingkeung,et al.Mean-variance,mean-VaR,and mean-CVaR models for portfolio selection with background risk[J].Risk Management,2019,21(2):73-98.
[6] Silva Y L T V,Herthel A B,Subramanian A.A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems[J].Expert Systems with Applications,2019,133:225-241.
[7] Bajeux Besnainou I,Belhaj R,Maillard D,et al.Portfolio optimization under tracking error and weights constraints[J].Journal of Financial Research,2011,34(2):295-330.
[8] Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353.
[9] Ramaswamy S.Portfolio selection using fuzzy decision theory[R].BIS Working Papers,1998.
[10] Yan Dawen,Hu Yaxing,Lai Kinkeung.A nonlinear interval portfolio selection model and its application in banks[J].Journal of Systems Science and Complexity,2018,31(3):696-733.
[11] Li Hongquan,Yi Zhihong.Portfolio selection with coherent investor's expectations under uncertainty[J].Expert Systems with Applications,2019,133:49-58.
[12] Chiu M C,Wong H Y.Mean-variance portfolio selection with correlation risk[J].Journal of Computational and Applied Mathematics,2014,263:432-444.
[13] Zhang Xili,Zhang Weiguo,Xu Weijun.An optimization model of the portfolio adjusting problem with fuzzy return and a SMO algorithm[J].Expert Systems with Applications,2011,38(4):3069-3074.
[14] Tsaur R C.Fuzzy portfolio model with different investor risk attitudes[J].European Journal of Operational Research,2013,227(2):385-390.
[15] Ruiz A B,Saborido R,Bermúdez J D,et al.Preference-based evolutionary multi-objective optimization for portfolio selection:a new credibilistic model under investor preferences[J].Journal of Global Optimization,2020,76(2):295-315.
[16] Zhou Xiaoyang,Wang Jue,Yang Xiangping,et al.Portfolio selection under different attitudes in fuzzy environment[J].Information Sciences,2018,462:278-289.
[17] Kahneman D,Tversky A.Prospect theory:an analysis of decisions under risk[J].Econometrica,1979,47(2):263-291.
[18] Lisson C.Using prospect theory to determine investor risk aversion[M]∥Liermann V,Stegmann C.The Impact of Digital Transformation and FinTech on the Finance Professional.Cham:Palgrave Macmillan,2019:79-93.
[19] Heaton J,Lucas D.Portfolio choice and asset prices:the importance of entrepreneurial risk[J].The Journal of Finance,2000,55(3):1163-1198.
[20] 李佳.多种测度下含有背景风险的投资组合模型研究[D].广州:华南理工大学,2017.
[21] Saeidifar A,Pasha E.The possibilistic moments of fuzzy numbers and their applications[J].Journal of Computational and Applied Mathematics,2009,223(2):1028-1042.
[22] 徐成贤, 薛宏刚.金融工程:计算技术与方法[M].北京:科学出版社,2007:190.
[23] 李会荣. 融合粒子群的全局优化混合智能算法研究[D].银川:北方民族大学,2009.
[24] Shi Yuhui,Eberhart R C.Empirical study of particle swarm optimization[C]∥Proceedings of the 1999 Congress on Evolutionary Computational Intelligence,Washington DC:IEEE,1999,3:1945-1950.
[25] 李会荣,高岳林,李济民.一种非线性递减惯性权重策略的粒子群优化算法[J].商洛学院学报,2007,21(4):16-20.

备注/Memo

备注/Memo:
收稿日期:2019-09-24
基金项目:国家自然科学基金(61561001),宁夏高等教育一流学科建设基金(NXYLXK2017B09)和北方民族大学重大专项(2019MS003)资助项目.
通信作者:高岳林(1963-),男,陕西榆林人,教授,博士生导师,主要从事最优化理论及应用、智能计算与智能信息处理、金融工程与风险管理研究.E-mail:gaoyuelin@263.net
更新日期/Last Update: 2020-10-20