[1]贺增甲,孔令华*,符芳芳.2维Gross-Pitaevskii方程的分裂高阶紧致差分格式[J].江西师范大学学报(自然科学版),2020,(06):599-603.[doi:10.16357/j.cnki.issn1000-5862.2020.06.09]
 HE Zengjia,KONG Linghua*,FU Fangfang.The Splitting High-Order Compact Difference Scheme for Two-Dimensional Gross-Pitaevskii Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(06):599-603.[doi:10.16357/j.cnki.issn1000-5862.2020.06.09]
点击复制

2维Gross-Pitaevskii方程的分裂高阶紧致差分格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
599-603
栏目:
数学与应用数学
出版日期:
2020-12-20

文章信息/Info

Title:
The Splitting High-Order Compact Difference Scheme for Two-Dimensional Gross-Pitaevskii Equation
文章编号:
1000-5862(2020)06-0599-05
作者:
贺增甲1孔令华1*符芳芳2
1.江西师范大学数学与统计学院,江西 南昌 330022; 2.南昌工学院基础部,江西 南昌 330108
Author(s):
HE Zengjia1KONG Linghua1*FU Fangfang2
1.School of Mathematics and Statistics,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.Department of Fundamental Education,Nanchang Institute of Science and Technology,Nanchang Jiangxi 330108,China
关键词:
Gross-Pitaevskii方程 旋转效应 分裂方法 高阶紧致格式 质量守恒
Keywords:
Gross-Pitaevskii equation rotating effect splitting method high-order compact scheme mass conservation law
分类号:
O 241.8
DOI:
10.16357/j.cnki.issn1000-5862.2020.06.09
文献标志码:
A
摘要:
该文为带有旋转角动量的Gross-Pitaevskii方程构造了分裂高阶紧致差分格式.首先通过时间分裂将其分为线性方程和非线性方程,非线性方程可以通过质量守恒定律进行精确求解,线性方程通过高阶紧致格式和局部1维方法进行离散,最终得到的格式时间方向2阶收敛和空间方向4阶收敛,并保持质量守恒.最后用数值算例验证了格式的收敛阶以及质量守恒性.
Abstract:
The splitting high-order compact difference scheme for the Gross-Pitaevskii equation with angular momentum rotation term is constructed.Firstly,the equation is divided into linear equations and nonlinear equations by time splitting method.Secondly,the nonlinear equations can be accurately solved by the conservation law of mass,and the linear equation is discretized by a high-order compact scheme and a local one-dimensional method.The resulting scheme converges second-order in time and fourth-order in space while maintaining mass conservation.Finally,numerical experiments verify the convergence orders and mass conservation of the scheme.

参考文献/References:

[1] Anderson M H,Ensher J R,Matthewa M R,et al.Obser- vation of Bose-Einstein condensation in a dilute atomic vapor[J].Science,1995,269(5221):198-201.
[2] Davis K B,Mewes M O,Andrews M R,et al.Bose-Einstein condensation in a gas of sodium atoms[J].Phys Rev Lett,1995,75(22):3969-3973.
[3] Bao Weizhu,Jaksch D,Markowich P A.Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation[J].J Comput Phys,2003,187(1):318-342.
[4] 符芳芳,周媛兰.2维Gross-Pitaevskii方程的辛格式[J].江西师范大学学报:自然科学版,2016,40(6):599-602.
[5] Wang Lan,Cai Wenjun,Wang Yushun.An energy-preserving scheme for the coupled Gross-Pitaevskii equations[J].Adv Appl Math Mech,2021,13(1):203-231.
[6] Kong Linghua,Hong Yuqi,Tian Nana,et al.Stable and efficient numerical schemes for two-dimensional Maxwell equations in lossy medium[J].J Comput Phys,2019,397:108703.
[7] Wang Hanquan.A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates[J].J Comput Appl Math,2007,205(1):88-104.
[8] 陈萌,孔令华,王兰.Burgers方程的跳点紧致格式[J].江西师范大学学报:自然科学版,2017,41(5):526-530.
[9] 翟步祥,聂涛,薛翔.5次非线性Schrödinger方程的一个线性化4层紧致差分格式[J].江西师范大学学报:自然科学版,2019,43(1):35-38.
[10] Li Jichun,Chen Yitung,Liu Guoqing.High order compact ADI methods for the parabolic equations[J].Comput Math Appl,2006,52(8/9):1343-1356.
[11] Lele S K.Compact finite difference schemes with spectral-like solution[J].J Comput Phys,1992,103(1):16-42.
[12] 孔令华,田娜娜,张鹏.2维Maxwell方程的局部1维高阶紧致格式[J].江西师范大学学报:自然科学版,2019,43(1):31-34.
[13] Bao Weizhu,Cai Yongyong.Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation[J].Math Comp,2013,82:99-128.

备注/Memo

备注/Memo:
收稿日期:2020-08-11
基金项目:国家自然科学基金(11961036)和江西省教育厅基金(GJJ200310)资助项目.
通信作者:孔令华(1977-),男,江西石城人,教授,博士,博士生导师,主要从事微分方程数值方法的研究.E-mail:konglh@mail.ustc.edu.cn
更新日期/Last Update: 2020-12-20