[1]龚雄涛.大型强子对撞机上膺快度及能量估计研究[J].江西师范大学学报(自然科学版),2020,(06):649-653.[doi:10.16357/j.cnki.issn1000-5862.2020.06.18]
 GONG Xiongtao.The Study on the Estimation of Pseudorapidity Distribution and Energy Density on the Large Hadron Collider[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(06):649-653.[doi:10.16357/j.cnki.issn1000-5862.2020.06.18]
点击复制

大型强子对撞机上膺快度及能量估计研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
649-653
栏目:
物理学
出版日期:
2020-12-20

文章信息/Info

Title:
The Study on the Estimation of Pseudorapidity Distribution and Energy Density on the Large Hadron Collider
文章编号:
1000-5862(2020)06-0649-05
作者:
龚雄涛12
1.华中师范大学物理科学与技术学院,湖北 武汉 430079; 2.湖北职业技术学院,湖北 孝感 432100
Author(s):
GONG Xiongtao12
1.College of Physical Science and Technology,Central China Normal University,Wuhan Hubei 437600,China; 2.Hubei Vocational and Technical College,Xiaogan Hubei 432100,China
关键词:
Mathematica 纵向加速粘滞流体力学 赝快度分布 能量密度估计
Keywords:
Mathematica longitudinal acceleration viscous fluid mechanics pseudorapidity distribution energy density estimation
分类号:
O 572.2
DOI:
10.16357/j.cnki.issn1000-5862.2020.06.18
文献标志码:
A
摘要:
利用Mathematica软件研究了相对论重离子对撞中末态带电强子赝快度分布谱,并与大型强子对撞机(LHC)上2.76 TeV及5.02 TeV铅-铅(Pb+Pb)对撞实验数据进行拟合,编写数值算法程序抽取了最中心碰撞流体演化纵向膨胀加速度参数.为了研究纵向加速度效应及流体黏滞效应对夸克胶子等离子早期能量密度估计的影响,依据Bjorken能量密度估计模型,讨论了考虑黏滞效应修正的能量密度估计模型,发现黏滞效应会使对碰撞早期的能量密度估计增大.
Abstract:
Using the Mathematica software,the pseudo-rapidity distribution for charged particles is investigated in the relativistic heavy ion collisions from an accelerating hydrodynamic model.Such hydrodynamic model describes the pseudo-rapidity distribution data at 2.76 TeV,5.02 TeV(Pb+Pb)and 5.44 Xe+Xe collisions well and extracts the longitudinal acceleration parameters for the most central collision.Based on the Bjorken model,the longitudinal acceleration effect and viscosity effect dependence for the medium initial energy density estimation are investigated,and the results show that the viscosity effect enhances the estimate of the initial energy density.

参考文献/References:

[1] 李汉龙,缪淑贤,韩婷.Mathematica基础及其在数学建模中的应用[M].2版.北京:国防工业出版社,2016.
[2] Cliff H,Kelvin M,Michael M.Hands-on start to Wolfram mathematica:and programming with the Wolfram language[EB/OL].[2020-06-11].https://download.csdn.net/download/qq_39599295/11221364.
[3] 江泽方.相对论流体力学中含纵向加速流效应的解析解及其在RHIC以及LHC上的应用研究[D].武汉:华中师范大学,2019.
[4] Csörgo T,Kasza G,Csanád M,et al.New exact solutions of relativistic hydrodynamics for longitudinally expanding fireballs[EB/OL].[2020-06-11].https://arxiv.org/pdf/1805.01427.pdf.
[5] Jiang Zefang,Yang Chunbin,Ding Chi,et al.Pseudo-rapidity distribution from 147 a perturbative solution of viscous hydrodynamics for heavy ion collisions at RHIC and LHC[EB/OL].[2020-06-11].https://iopscience.iop.org/article/10.1088/1674-1137/42/12/123103.
[6] Gong Xiongtao,Jiang Zefang,She Duan,et al.Viscous hydrodynamic description of the pseudo-rapidity density for Pb+Pb and Xe+Xe collisions at the LHC[EB/OL].[2020-06-11].https://www.researchgate.net/publication/333051566_Viscous_Hydrodynamic_Description_of_the_Pseudorapidity_Density_and_Energy_Density_Estimation_for_PbPb_and_XeXe_Collisions_at_the_LHC.
[7] Csögo T,Lorstad B.Bose-Einstein correlations for three-dimensionally expanding,cylindrically symmetric,finite systems[J].Phys Rev C,1996,54(3):1390-1403.
[8] Adam J.Centrality evolution of the charged-particlepseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at (SNN)1/2=2.76 TeV[EB/OL].[2020-06-11].http://cds.cern.ch/record/2118086/files/2015-010.pdf.
[9] Adam J.Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at (SNN)1/2=5.02 TeV[EB/OL].[2020-06-11].https://arxiv.org/abs/1304.0347.
[10] Acharya Shreyasi.Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe-Xe collisions at (SNN)1/2=5.44 TeV[EB/OL].[2020-06-11].https://arxiv.org/pdf/1805.04432.pdf
[11] Acharya Shreyasi.Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe-Xe collisions at (SNN)1/2=5.44 TeV[EB/OL].[2020-06-11].https://arxiv.org/pdf/1805.04432.pdf.
[12] Bjorken J D.Highly relativistic nucleus-nucleus collisions:the central rapidity region[J].Phys Rev D,1983,27(1):135-140.
[13] Jiang Zefang,Yang Chunbin,Csanád M,et al.Accelerating hydrodynamic description of pseudorapidity density and the initial energy density in P+P,Cu+Cu,Au+Au,and Pb+Pb collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider[J].Phys Rev C,2018,97:64906.
[14] Muronga A.Causal theories of dissipative relativistic fluid dynamics for nuclear collisions[J].Phys Rev C,2004,69:34904.
[15] Song Huichao,Bass Steffen A,Heinz Ulrich,et al.200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid[J].Physical Review Letters,2011,106(19):192301.
[16] Meyer H B.A calculation of the bulk viscosity in SU(3)gluodynamics[J].Physical Review Letters,2008,103:162001.
[17] Csörgo T,Nagy M I,Csanád M.A new family of simple solutions of perfect fluid hydrodynamics[J].Phys Lett,2008,B663:306.

备注/Memo

备注/Memo:
收稿日期:2020-07-11
基金项目:国家自然科学基金(11435004),中国高校产学研创新基金(2019ITA03017)和湖北省教育科学规划课题(2019GB152)资助项目.
作者简介:龚雄涛(1973-),男,湖北应城人,副教授,博士,主要从事教育信息技术和粒子物理的研究.E-mail:xgzygxt@163.com
更新日期/Last Update: 2020-12-20