[1]边俊杰,段可仪,康 斐.基于DEA-Tobit模型的知识产权与金融互动对江西省供给侧改革支撑效率研究——基于江西省与29个省份之间的对比分析[J].江西师范大学学报(自然科学版),2021,(01):10-21.[doi:10.16357/j.cnki.issn1000-5862.2021.01.02]
 BIAN Junjie,DUAN Keyi,KANG Fei.The Study on the Supporting Efficiency of Intellectual Property and Financial Integration on Supply-Side Reform in Jiangxi Province Based on DEA-Tobit Model——Based on the Comparative Analysis Between Jiangxi Province and 29 Province[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(01):10-21.[doi:10.16357/j.cnki.issn1000-5862.2021.01.02]
点击复制

基于DEA-Tobit模型的知识产权与金融互动对江西省供给侧改革支撑效率研究——基于江西省与29个省份之间的对比分析()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年01期
页码:
10-21
栏目:
出版日期:
2021-02-10

文章信息/Info

Title:
The Study on the Supporting Efficiency of Intellectual Property and Financial Integration on Supply-Side Reform in Jiangxi Province Based on DEA-Tobit Model——Based on the Comparative Analysis Between Jiangxi Province and 29 Province
文章编号:
1000-5862(2021)01-0010-12
作者:
边俊杰段可仪康 斐
赣南师范大学经济管理学院,江西 赣州 341000
Author(s):
BIAN JunjieDUAN KeyiKANG Fei
School of Economics and Management,Gannan Normal University,Ganzhou Jiangxi 341000,China
关键词:
知识产权保护 金融发展 供给侧改革 3阶段DEA-Tobit
Keywords:
intellectual property protection financial development supply-side reform three-stage DEA-Tobit
分类号:
F 064.1
DOI:
10.16357/j.cnki.issn1000-5862.2021.01.02
文献标志码:
A
摘要:
首先,为对比分析知识产权与金融互动对江西省研发效率提升的支撑效果,选取3阶段的DEA 模型,对中国2008—2018年30个省份的创新效率进行测算,研究结果发现:在未调整环境因素之前,样本省份的效率值存在虚高的问题; 江西省创新投入产出效率在调整前后都处于全国中下水平,且投入产出效率始终处于规模报酬递增阶段,有效研发投入不足阻碍了地区创新效率的提升; 然后,选取Tobit模型分析影响江西省研发创新效率提升的因素,研究结果发现:江西省的知识产权金融没有达到促进创新效率提升的作用,地区经济发展水平有力促进创新成果转化和效率提升,江西省目前的知识产权发展环境不利于创新效率提升; 最后,针对实证结果,从各类市场主体的角度为知识产权与金融互动对创新效率提升提出供给侧改革的一些建议.
Abstract:
In order to compares and analyzes the supporting effect of intellectual property rights and financial integration on the improvement of research and development efficiency in Jiangxi Province,a three-stage DEA model is firstly selected to measure the innovation efficiency of China’s 30 sample provinces from 2008 to 2018.It is found that before the adjustment of environmental factors,the efficiency values of the sample provinces have a falsely high problem.The innovation input-output efficiency of Jiangxi Province is at the middle and lower levels of the country before and after the adjustment,and the input-output efficiency is always at the stage of increasing returns to scale.Insufficient effective R&D investment has hindered the improvement of regional innovation efficiency.Then the Tobit model is selected to analyze the factors that affect the improvement of Jiangxi’s R&D and innovation efficiency.The results show that Jiangxi Province’s intellectual property finance has not achieved the role of promoting innovation efficiency,and the regional economic development level has effectively promoted the transformation of innovation achievements and efficiency.Jiangxi’s current intellectual property development environment is not conducive to improving innovation efficiency.Finally,according to the empirical results,and some suggestions for supply-side reforms are provided from the perspective of various market players to enhance the interaction of intellectual property and finance to improve innovation efficiency.

参考文献/References:

[1] F?re R,Grosskopf S,Margaritis D.Malmquist productivity indexes and DEA[M]∥Cooper W W,Seiford L M,Zhu Joe.Handbook on data envelopment analysis.2nd ed.Boston:Springer,2011:127-149.
[2] Karadayi M A,Ekinci Y.Evaluating R&D performance of EU countries using categorical DEA[J].Technology Analysis and Strategic Management,2019,31(2):227-238.
[3] Kong Xiao.Estimation and decomposition of China’s provincial total factor productivity:based on DEA malmquist index method[J].Journal of Economics and Sustainable Development,2017,8(14):108-112.
[4] Wu Jun.Financing constraints for R&D in China:the role of state ownership[J].Applied Economics Letters,2019,26(14):1162-1166.
[5] Kim Y K,Lee K,Park W G,et al.Appropriate intellectual property protection and economic growth in countries at different levels of development[J].Research Policy,2012,41(2):358-375.
[6] 赵增耀,周晶晶,沈能.金融发展与区域创新效率影响的实证研究:基于开放度的中介效应[J].科学学研究,2016,34(9):1408-1416.
[7] 赵娜,王博.知识产权保护对企业技术创新:促进还是抑制?:2008—2014年我国高技术产业的经验证据[J].中央财经大学学报,2016(5):113-122.
[8] 李合龙,段紫薇.基于AHP-DEA-Malmquist的广东省科技金融效率评价研究[J].科技与经济,2018,31(2):50-54.
[9] 林德明,赵姗姗.基于SFA的知识产权政策效率评价研究[J].科技管理研究,2019,39(16):175-180.
[10] 刘和东,谢婷.高新技术产业研发效率的3阶段DEA分析[J].科技管理研究,2017,37(14):135-142.
[11] 崔学海,王崇举,曾波.基于DEA-Tobit的长江经济带技术转移金融支持效率研究[J].统计与信息论坛,2019,34(9):77-84.
[12]Charnes A,Cooper W W,Rhodes E.Measuring the efficiency of decision making units[J].European Journal of Operational Research,1978,2(6):429-444.
[13] 张敬文,王丹.基于RS-DEA模型的新兴产业联盟组合协同创新效率测度研究:以新能源汽车产业为例[J].金融教育研究,2020,33(6):3-9.
[14] Fried H O,Lovell C A K,Schmidt S S,et al.Accounting for environmental effects and statistical noise in data envelopment analysis[J].Journal of Productivity Analysis,2002,17(1/2):157-174.
[15] Han Jia,Chen Yuqing,Liu Ying,et al.Common variants of the UMOD promoter associated with blood pressure in a community-based Chinese cohort[J].Hypertension Research,2012,35(7):769-774.

备注/Memo

备注/Memo:
收稿日期:2020-08-18
基金项目:江西省自然科学基金(2018BAA208008)和江西省教育厅科学技术研究(GJJ170810)资助项目.
作者简介:边俊杰(1975-),男,河北保定人,教授,博士,主要从事科技金融领域研究.E-mail:76060742@qq.com
更新日期/Last Update: 2021-04-10