参考文献/References:
[1] Jain A K,Duin R P W,Mao Jianchang.Statistical pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
[2] Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[3] Liu Yang,Nie Feiping,Gao Quanxue,et al.Flexible unsupervised feature extraction for image classification[J].Neural Networks,2019,115:65-71.
[4] Yao Chao,Liu Yafeng,Jiang Bo,et al.LLE score:a new filter-based unsupervised feature selection method based on nonlinear manifold embedding and its application to image recognition[J].IEEE Transactions on Image Processing,2017,26(11):5257-5269.
[5] Yao Chao,Lu Zhaoyang,Li Jing,et al.A subset method for improving Linear Discriminant Analysis[J].Neurocomputing,2014,138:310-315.
[6] Fang Xiaozhao,Han Na,Wu Jigang,et al.Approximate low-rank projection learning for feature extraction[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(11):5228-5241.
[7] Lan Xiangyuan,Ma A J,Yuen P C,et al.Joint sparse representation and robust feature-level fusion for multi-cue visual tracking[J].IEEE Transactions on Image Processing,2015,24(12):5826-5841.
[8] Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs. Fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
[9] Abdi H,Williams L J.Principal component analysis[J].Wiley Interdisciplinary Reviews:Computational Statistics,2010,2(4):433-459.
[10] Xu Lei,Iosifidis A,Gabbouj M.Weighted linear discriminant analysis based on class saliency information[C]∥2018 25th IEEE International Conference on Image Processing,October 7-10,2018,Megaron Athens International Conference Centre,Athens:IEEE,2018:2306-2310.
[11] KanMeina,Shan Shiguang,Zhang Haihong,et al.Multi-view discriminant analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(1):188-194.
[12] Lai Zhihui,Xu Yong,Chen Qingcai,et al.Multilinear sparse principal component analysis[J].IEEE Trans Neural Netw Learn Syst,2014,25(10):1942-1950.
[13] He Xiaofei,Niyogi P.Locality preserving projections[J].Advances in Neural Information Processing Systems,2003,16(1):186-197.
[14] Cai Deng,He Xiaofei.Orthogonal locality preserving indexing[EB/OL].[2020-06-11].https://dl.acm.org/doi/10.1145/1076034.1076039.
[15] Liu Zhonghua,Yin Jun,Jin Zhong.Locality preserving projections based on L1 graph[EB/OL].[2020-06-11].http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5659156.
[16] Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
[17] Gou Jianping,Du Lan,Cheng Keyang,et al.Discriminative sparsity preserving graph embedding[EB/OL].[2020-06-11].http://ieeexplore.ieee.org/document/7744330/.
[18] Swets D L,Weng Juyang.Hierarchical discriminant analysis for image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):386-401.
[19] Qiao Lishan,Chen Songcan,Tan Xiaoyang.Sparsity preserving projections with applications to face recognition[J].Pattern Recognition,2010,43(1):331-341.
[20] Murray J F,Kreutz-Delgado K.Visual recognition and inference using dynamic overcomplete sparse learning[J].Neural Computation,2007,19(9):2301-2352.
[21] Amaldi E,Kann V.On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems[J].Theoretical Computer Science,1998,209(1/2):237-260.
[22] Donoho D L.For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J].Communications on Pure and Applied Mathematics,2006,59(6):797-829.
[23] Xu Xing,Shen Fumin,Yang Yang,et al.Learning discriminative binary codes for large-scale cross-modal retrieval[J].IEEE Transactions on Image Processing,2017,26(5):2494-2507.
[24] Cai Jianfeng,Candès E J,Shen Zuowei.A singular value thresholding algorithm for matrix completion[J].SIAM Journal on Optimization,2010,20(4):1956-1982.
[25] Georghiades A S,Belhumeur P N,Kriegman D J.From few to many:illumination cone models for face recognition under variable lighting and pose[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.