参考文献/References:
[1] Felipe A,Geraldo X.Word embeddings:a survey[EB/OL].[2019-03-12].https://arxiv.org/pdf/1901.09069.pdf.
[2] Gerard S,Andrew W,Yang Chungshu.A vector space model for automatic indexing[J].Communications of the ACM,1975,18(11):613-620.
[3] David D.The most influential paper gerard salton never wrote[EB/OL].[2019-03-16].https://www.ideals.illinois.edu/handle/2142/1697.
[4] Peter D T,Patrick P.From frequency to meaning:vector space models of semantics[J].Journal of Artificial Intelligence Research,2010,37(1):141-188.
[5] Wang Yuxuan,Hou Yutai,Che Wanxiang,et al.From static to dynamic word representations:a survey[EB/OL].[2019-03-12].https://link.springer.com/article/10.1007/s13042-020-01069-8.
[6] Scott D,Susan T D,George W F,et al.Indexing by latent semantic analysis[J].Journal of the American Society for Information Science,1990,41(6):391-407.
[7] Yoshua B,Réjean D,Pascal V,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003(3):1137-1155.
[8] Geffrey H,James L M,David E R.Distributed representations[M].Massachusetts:MIT Press,1986:77-109.
[9] Ronan C,Jason W.A unified architecture for natural language processing:deep neural networks with multitask learning[EB/OL].[2019-03-12].https://dl.acm.org/doi/10.1145/1390156.1390177.
[10] Ronan C,Jason W,Léon B,et al.Natural language processing(almost)from scratch[J].Journal of Machine Learning Research,2011,12(1):2493-2537.
[11] Zhang Lei,Wang Shuai,Liu Bing.Deep learning for sentiment analysis:a survey[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2018,8(4):e1253.
[12] Tomas M,Chen Kai,Greg C,et al.Efficient estimation of word representations in vector space[EB/OL].[2019-03-12].https://arxiv.org/abs/1301.3781v3.
[13] Tomas M,Ilya Sr,Chen Kai,et al.Distributed representations of words and phrases and their compositionality[EB/OL].[2019-03-12].https://www.mendeley.com/catalogue/1cc04e87-4750-3f1e-bbd3-7476f9046a47/.
[14] Jeffrey P,Richard S,Christopher D M.Glove:global vectors for word representation[EB/OL].[2020-02-11].https://nlp.stanford.edu/pubs/glove.pdf.
[15] Matthew E P,Mark N,Mohit I,et al.Deep contextualized word representations[EB/OL].[2019-03-12].https://arxiv.org/pdf/1802.05365.pdf.
[16] Jacob D,Chang Mingwei,Kenton Lee,et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2019-03-12].https://nlp.stanford.edu/seminar/details/jdevlin.pdf.
[17] Tom B B,Benjamin M,Nick R,et al.Language models are Few-Shot Learners[EB/OL].[2019-03-12].https://arxiv.org/abs/2005.14165.
[18] Qiu Xipeng,Sun Tianxiang,Xu Yige,et al.Pre-trained models for natural language processing:a survey[EB/OL].[2019-03-12].https://arxiv.org/abs/2003.08271v2.
[19] Chen Xinxiong,Xu Lei,Liu Zhiyuan,et al.Joint learning of character and word embeddings[EB/OL].[2019-03-12].https://dl.acm.org/doi/10.5555/2832415.2832421.
[20] Li Yanran,Li Wenjie,Sun Fei,et al.Component-enhanced Chinese character embeddings[EB/OL].[2019-03-12].https://arxiv.org/abs/1508.06669.
[21] Yin Rongchao,Wang Quan,Li Peng,et al.Multi-granularity Chinese word embedding[EB/OL].[2019-03-12].https://www.aclweb.org/anthology/D16-1100.pdf.
[22] Yu Jinxing,Jian Xun,Xin Hao,et al.Joint embeddings of Chinese words,characters,and fine-grained subcharacter components[EB/OL].[2019-03-12].http://repository.ust.hk/ir/Record/1783.1-87829.
[23] Shi Xinlei,Zhai Junjie,Yang Xudong,et al.Radical embedding:delving deeper to chinese radicals[EB/OL].[2019-03-12].https://www.mendeley.com/catalogue/b7502a9a-cf29-3806-9e84-0120f63fe04b/.
[24] Xu Jian,Liu Jiawei,Zhang Liangang,et al.Improve Chinese word embeddings by exploiting internal structure[EB/OL].[2019-03-12].https://www.aclweb.org/anthology/N16-1119.pdf.
[25] Cao Shaosheng,Lu Wei,Li Xiaolong.Cw2vec:learning Chinese word embeddings with stroke n-gram information[EB/OL].[2019-03-12].http://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14724/14187.
[26] Frederick Liu,Lu Han,Chieh Lo,et al.Learning character-level compositionality with visual features[EB/OL].[2019-03-12].https://arxiv.org/abs/1704.04859v1.
[27] Su T R,Lee H Y.Learning Chinese word representations from glyphs of characters[EB/OL].[2019-03-12].https://arxiv.org/abs/1704.04859v1.
[28] Meng Yuxian,Wu Wei,Wang Fei,et al.Glyce:Glyph-vectors for Chinese character representations[EB/OL].[2019-03-12].https://arxiv.org/pdf/1901.10125.pdf.
[29] Sun Chi,Qiu Xipeng,Huang Xuanjing.VCWE:Visual character-enhanced word embeddings[EB/OL].[2019-03-12].https://arxiv.org/pdf/1902.08795.pdf.
[30] Zellig S H.Distributional structure[EB/OL].[2019-03-12].https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520.
[31] Firth J R.A synopsis of linguistic theory,1930—1955[EB/OL].[2019-03-12].https://www.researchgate.net/publication/238697185_A_synopsis_of_linguistic_theory_1930—1955.
[32] Sepp H,Jürgen S.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[33] Ashish V,Noam S,Niki P,et al.Attention is all you need[EB/OL].[2019-03-12].https://arxiv.org/abs/1706.03762v5.
[34] 王永民.数字键汉字编码技术的研究和应用[J].计算机学报,2008,31(6):1046-1055.
[35] Diederik P K,Jimmy B.Adam:a method for stochastic optimization[EB/OL].[2019-03-12].https://arxiv.org/abs/1412.6980v9.
[36] Nikhil G,Londa S,Dan J,et al.Word embeddings quantify 100 years of gender and ethnic stereotypes[EB/OL].[2019-03-12].https://arxiv.org/abs/1711.08412.
[37] Wang Tianlu,Xi V L,Nazneen F R,et al.Double-hard debias:tailoring word embeddings for gender bias mitigation[EB/OL].[2019-03-12].https://arxiv.org/abs/2005.00965v1.