[1]徐保根,兰 婷,张君霞,等.关于图的符号团控制数[J].江西师范大学学报(自然科学版),2021,(04):331-334+338.[doi:10.16357/j.cnki.issn1000-5862.2021.04.01]
 XU Baogen,LAN Ting,ZHANG Junxia,et al.On Signed Clique Domination Numbers of Graphs[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(04):331-334+338.[doi:10.16357/j.cnki.issn1000-5862.2021.04.01]
点击复制

关于图的符号团控制数()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年04期
页码:
331-334+338
栏目:
数学与应用数学
出版日期:
2021-08-10

文章信息/Info

Title:
On Signed Clique Domination Numbers of Graphs
文章编号:
1000-5862(2021)04-0331-04
作者:
徐保根兰 婷张君霞李 广
华东交通大学理学院,江西 南昌 330013
Author(s):
XU BaogenLAN TingZHANG JunxiaLI Guang
Department of Mathematics,East China Jiaotong University,Nanchang Jiangxi 330013,China
关键词:
联图 控制数 符号团控制数
Keywords:
Graph join graph domination number signed clique domination number
分类号:
O 157.5
DOI:
10.16357/j.cnki.issn1000-5862.2021.04.01
文献标志码:
A
摘要:
对于一个非空图G=(V,E)和一个函数f:E→{-1,+1},若SE,则记f(S)=∑e∈Sf(e).若对于G中每个非平凡的团K均满足f(E(K))≥1,则f被称为G的一个符号团控制函数,G的符号团控制数表达为
Abstract:
For a nonempty graph G=(V,E)and a function f:E→{-1,+1},if SE then write f(S)=∑e∈Sf(e),a function f is said to be a signed clique dominating function(SCDF)of the graph G if f(E(K))≥1 holds for every nontrivial clique K in G,and the signed clique domination number of G is defined as γ'scl(G)=min{f(E)| f is SCDF of G}.In this paper,the signed clique domination numbers of some join graph are studied,and the signed clique domination numbers of graphs Cm∨K^-n,Cm∨nK2 and Cm∨Cn are mainly determined,which generalize partially some known results.

参考文献/References:

[1] Bondy J A,Murty U S R.Graph theory with application [M].London,New York:Macmillan Press,1976.
[2] 徐保根.图的控制与染色理论 [M].武汉:华中科技大学出版社,2013.
[3] Haynes T W,Hedetniemi S T,Slater P J.Domination in graph [M].New York:Marcel Dekker,1998.
[4] Cockayne E J,Hedetniemi S T.Towards a theory of domination in graphs [J].Networks,1977,7(3):247-261.
[5] Xu Baogen,Cockayne E J,Haynes T W,et al.Extremal graphs for inequalities involing domination parameters [J].Discrete Math,2000,216(1/2/3):1-10.
[6] Dunbar E J,Hedetniemi S T,Henning M A,et al.Signed domination in graphs [M]∥Alavi Y,Chartrand G,Ollermann O R,et al.Graph Theory,Combinatorics and Applications.New York:John Wiley and Sons,1995:311-322.
[7] Favaron O.Signed domination in regular graphs [J].Discrete Mathematics,1996,158(1/2/3):287-293.
[8] 徐保根,陈悦,孔祥阳.图的符号边全K控制数 [J].江西师范大学学报:自然科学版,2011,35(3):316-318.
[9] Cockayne E J,Dawes R M,Hedetniemi S T.Total domination in graphs [J].Networks,2006,10(3):211-219.
[10] Xu Baogen.On signed edge domination numbers of graphs [J].Discrete Mathematics,2001,239(1/2/3):179-189.
[11] 赵金凤,徐保根.关于图的符号边控制数的下界 [J].江西师范大学学报:自然科学版,2010,34(1):27-29.
[12] Xu Baogen.On signed cycle domination in graphs [J].Discrete Mathematics,2009,309(4):1007-1012.
[13] 徐保根,周尚超.图与补图的符号圈控制数 [J].江西师范大学学报:自然科学版,2006,30(3):249-251.
[14] 敖国艳,吉日木图,赵凌琪.图的符号团边控制数 [J].数学杂志,2015,35(5):1109-1114.
[15] 徐保根.关于图的团符号控制数 [J].系统科学与数学,2008,28(3):282-287.

相似文献/References:

[1]徐保根,赵利芬,操叶龙,等.关于图的控制集划分[J].江西师范大学学报(自然科学版),2013,(05):475.
 XU Bao-gen,ZHAO Li-fen,CAO Ye-long,et al.On the Partitions of the Dominating Set in Graphs[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(04):475.

备注/Memo

备注/Memo:
收稿日期:2021-06-28
基金项目:国家自然科学基金(11961026,11861032)和江西省自然科学基金(20171BAB201009,20181BAB201002)资助项目.
作者简介:徐保根(1963—),男,江西南昌人,教授,主要从事图论及应用研究.E-mail:xbg13879123773@126.com
更新日期/Last Update: 2021-08-10