[1]周纹心,申海燕,周国立*.具有随机支出的带延迟的对偶保险风险模型[J].江西师范大学学报(自然科学版),2021,(04):343-348.[doi:10.16357/j.cnki.issn1000-5862.2021.04.04]
 ZHOU Wenxin,SHEN Haiyan,ZHOU Guoli*.The Delayed Dual Risk Model with Stochastic Expense[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(04):343-348.[doi:10.16357/j.cnki.issn1000-5862.2021.04.04]
点击复制

具有随机支出的带延迟的对偶保险风险模型()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年04期
页码:
343-348
栏目:
数学与应用数学
出版日期:
2021-08-10

文章信息/Info

Title:
The Delayed Dual Risk Model with Stochastic Expense
文章编号:
1000-5862(2021)04-0343-06
作者:
周纹心1申海燕2周国立2*
1.重庆师范大学经济与管理学院,重庆 401331; 2.重庆大学数学与统计学院,重庆 401331
Author(s):
ZHOU Wenxin1SHEN Haiyan2ZHOU Guoli2*
1.School of Economics and Management,Chongqing Normal University,Chongqing 401331,China; 2.School of Mathematics and Statistics,Chongqing University,Chongqing 401331,China
关键词:
对偶风险模型 延迟 随机支出 积分方程 指数分布
Keywords:
dual risk model delay stochastic expense integral equations exponential distribution
分类号:
O 211.67
DOI:
10.16357/j.cnki.issn1000-5862.2021.04.04
文献标志码:
A
摘要:
该文考虑了在带延迟的对偶风险模型中支出服从指数分布的情况.首先,运用无穷小分析法以及随机过程的基本理论推导出破产时间的拉普拉斯变换、破产概率和破产时间的期望所满足的积分-微分方程; 其次,运用常微分方程方法得到了当随机支出和收入变量均为指数分布时的破产概率和相关破产时间的解析表达式; 最后,列举了数值实例来论证在模型中的某些参数对破产概率的影响.
Abstract:
The case that expense follows exponential distribution in the delayed dual risk model is considered.Firstly,by using the infinitesimal method and the basic theory of stochastic processes,the integral equations of the Laplace transform of the ruin time,the ruin probability and the expected value of the ruin time are derived.Secondly,when the stochastic expense and revenue variables are exponential distribution,the explicit expressions for ruin probability and related ruin time by using the ordinary differential equation are obtained.Finally,numerical examples are given to demonstratethe effect of some parameters in this model on ruin probability.

参考文献/References:

[1] Mazza C,Rullière D.A link between wave governed random motions and ruin processes [J].Insurance:Mathematics and Economics,2004,35(2):205-222.
[2] Lefèvre Cl,Picard Ph.A nonhomogeneous risk model for insurance [J].Computers and Mathematics with Applications,2006,51(2):325-334.
[3] Cramér H.Collective risk theory:a survey of the theory from the point of view of the theory of stochastic processes [M].Stockholm:Nordiska Bokhandeln,1955.
[4] Avanzi B,Gerber H U,Elias S.Optimal dividends in the dual model [J].Insurance:Mathematics and Economics,2007,41(2):653-667.
[5] Andrew C Y Ng.On a dual model with a dividend threshold [J].Insurance Mathematics and Economics,2009,44(2):315-324.
[6] Wen Yuzhen,Yin Chuancun.On a dual model with barrier strategy [J].Journal of Applied Mathematics,2012,2012(11):331-353.
[7] Cheung E C K.A unifying approach to the analysis of business with random gains [J].Scandinavian Actuarial Journal,2012,2012(3):153-182.
[8] Waters H R,Papatriandafylou A.Ruin probabilities allowing for delay in claims settlement [J].Insurance Mathematics and Economics,1985,4(2):113-122.
[9] Dassios A,Zhao Hongbiao.A risk model with delayed claims [J].Journal of Applied Probability,2013,50(3):686-702.
[10] Zhu Lingjiong.A delayed dual risk model [J].Stochastic Models,2017,33(1):149-170.
[11] 张万路,殷晓龙,赵翔华.对偶延迟更新风险模型的占位时 [J].数学物理学报,2019,39(4):918-931.
[12] Mirasol N M.The output of an M/G/∞ queuing systems is Poisson [J].Operations Research,1963,11(2):282-284.

备注/Memo

备注/Memo:
收稿日期:2021-05-20
基金项目:国家自然科学基金面上课题(11971077)和重庆市自然科学基金(cstc2020jcyj-msxm2554)资助项目.
通信作者:周国立(1981—),男,湖南娄底人,教授,博士,博士生导师,主要从事保险风险、金融管理研究.E-mail:zhouguoli736@126.com
更新日期/Last Update: 2021-08-10