[1]章 溢,周金亮.索赔次数的贝叶斯预测与信度近似[J].江西师范大学学报(自然科学版),2021,(04):353-361.[doi:10.16357/j.cnki.issn1000-5862.2021.04.06]
 ZHANG Yi,ZHOU Jinliang.The Bayesian Prediction and Credibility Approximate of Claim Number[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(04):353-361.[doi:10.16357/j.cnki.issn1000-5862.2021.04.06]
点击复制

索赔次数的贝叶斯预测与信度近似()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年04期
页码:
353-361
栏目:
数学与应用数学
出版日期:
2021-08-10

文章信息/Info

Title:
The Bayesian Prediction and Credibility Approximate of Claim Number
文章编号:
1000-5862(2021)04-0353-09
作者:
章 溢1周金亮2
1.江西师范大学财政金融学院,江西 南昌 330022; 2.江西师范大学数学与统计学院,江西 南昌 330022
Author(s):
ZHANG Yi1ZHOU Jinliang2
1.School of Finance,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.School of Mathematics and Statistics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
泊松分布 伽马分布 贝叶斯预测 信度近似 结构参数
Keywords:
Poisson distribution Gamma distribution Bayesian prediction credibility approximation structural parameters
分类号:
O 212.9
DOI:
10.16357/j.cnki.issn1000-5862.2021.04.06
文献标志码:
A
摘要:
该文先对保单的索赔次数建立了贝叶斯模型; 然后,根据样本分布和先验分布已知或未知分3种情形讨论了索赔次数的贝叶斯预测及信度预测,并给出了结构参数的估计方法; 最后,通过数值模拟的方法对3个预测的均方误差和收敛性进行了比较.
Abstract:
The Bayesian model is established for the number of claims of the insurance policy.According to whether the sample distribution and the prior distribution are known,the Bayesian prediction and credibility approximate claim number are discussed in three kinds of situations,and the estimation method of structural parameters is given.Finally,the convergences and the mean square errors of the three predictions are compared by numerical simulation.

参考文献/References:

[1] 温利民.信度估计的理论与方法 [M].北京:科学出版社,2012.
[2] 张连增,申晴.泊松提升模型在中国车险索赔频率预测建模中的应用 [J].统计与信息论坛,2019,34(9):27-34.
[3] 王选鹤,孟生旺,杨默.车险索赔次数预测模型的扩展与应用 [J].保险研究,2018(11):82-92.
[4] 孟生旺,杨亮.随机效应零膨胀索赔次数回归模型 [J].统计研究,2015,32(11):97-102.
[5] Li Bo,Ni Weihong,Constantinescu C.Risk models with premiums adjusted to claims number [J].Insurance:Mathematics and Economics,2015,65:94-102.
[6] Dembińska A,Buraczyńska A.The long-term behavior of number of near-maximum insurance claims [J].Insurance:Mathematics and Economics,2019,88:226-237.
[7] Li Yun,Pakes A G.On the number of near-maximum insurance claims [J].Insurance: Mathematics and Economics,2001,28(3):309-323.
[8] Denuit M,Maréchal X,Pitrebois S,et al.Actuarial modelling of claim counts:risk classification,credibility and bonus-malus systems [M].Chichester:John Wiley and Sons,2007:119-163.
[9] Young V R.Credibility using semiparametric models and a loss function with a constancy penalty [J].Insurance:Mathematics and Economics,2000,26(2/3):151-156.
[10] Canfield R V.A Bayesian approach to reliability estimation using a loss function [J].IEEE Transactions on Reliability,1970,19(1):13-16.
[11] Gómez-Déniz E.A generalization of the credibility theory obtained by using the weighted balanced loss function [J].Insurance:Mathematics and Economics,2008,42(2):850-854.
[12] 茆诗松,王静龙,濮晓龙.高等数理统计 [M].北京:高等教育出版社,2006.
[13] Morata L B I.A priori ratemaking using bivariate Poisson regression models [J].Insurance: Mathematics and Economics,2009,44(1):135-141.
[14] Bermúdez L,Karlis D.A posteriori ratemaking using bivariate Poisson models [J].Scandinavian Actuarial Journal,2017(2):148-158.
[15] Bermúdez L,Karlis D.Bayesian multivariate Poisson models for insurance ratemaking [J].Insurance:Mathematics and Economics,2011,48(2):226-236.
[16] Berkhout P,Plug E.A bivariate poisson count data model using conditional probabilities [J].Statistica Neerlandica,2004,58(3):349-364.
[17] Bühlmann H,Gisler A.A course in credibility theory and its applications [M].Berlin:Springer-Verlag,2005:55-75.
[18] 程兵,陈萍.具有风险相依结构的平衡信度估计 [J].经济数学,2016,33(1):80-83.
[19] 章溢,李志龙,温利民.矩相关保费原理中风险保费的经验厘定 [J].中国科学:数学,2019,49(7):1041-1062.
[20] 章溢,熊佳,温利民,等.基于核估计下概率密度函数的信度模型 [J].高校应用数学学报,2020,35(1):29-39.
[21] Gisler A,Wüthrich M V.Credibility for the chain ladder reserving method [J].Astin Bulletin,2008,38(2):565-600.
[22] Kremer E.A remark on parameter-estimation of autoregressive credibility-models [J].Blätter der DGVFM,1983,16(2):153-159.
[23] Atanasiu V.Applications aiming Bühlmann's credibility model [J].University Politehnica of Bucharest Scientific Bulletin:Seriers A,2011,73(2):51-64.

备注/Memo

备注/Memo:
收稿日期:2021-05-20
基金项目:国家自然科学基金(71761019),江西省自然科学基金(20202BABL201001)和江西省教育厅科学技术研究重点课题(GJJ200304)资助项目.
作者简介:章 溢(1985—),女,江西南昌人,讲师,博士,主要从事经济统计与保险精算研究.E-mail:153574268@qq.com
更新日期/Last Update: 2021-08-10