[1]李博文,李晓军*.无界域上具有乘积噪声的强阻尼非自治随机波动方程的吸引子存在性[J].江西师范大学学报(自然科学版),2021,(05):520-529.[doi:10.16357/j.cnki.issn1000-5862.2021.05.11]
 LI Bowen,LI Xiaojun*.The Random Attractors for Non-Autonomous Stochastic Wave Equations with Multiplicative Noise and Strongly Damped Terms on Unbounded Domains[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(05):520-529.[doi:10.16357/j.cnki.issn1000-5862.2021.05.11]
点击复制

无界域上具有乘积噪声的强阻尼非自治随机波动方程的吸引子存在性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年05期
页码:
520-529
栏目:
出版日期:
2021-10-10

文章信息/Info

Title:
The Random Attractors for Non-Autonomous Stochastic Wave Equations with Multiplicative Noise and Strongly Damped Terms on Unbounded Domains
文章编号:
1000-5862(2021)05-0520-10
作者:
李博文李晓军*
河海大学理学院,江苏 南京 210098
Author(s):
LI BowenLI Xiaojun*
School of Science,Hohai University,Nanjing Jiangsu 210098,China
关键词:
波动方程 随机吸引子 渐近紧性 强阻尼 无界区域
Keywords:
wave equations random attractor asymptotic compactness strongly damping unbounded domains
分类号:
O 177.91; O 211.63
DOI:
10.16357/j.cnki.issn1000-5862.2021.05.11
文献标志码:
A
摘要:
该文研究无界域上带有强阻尼和乘积噪声的非自治随机波动方程吸引子,利用变换系统的方法对解进行一致估计,并通过解的分解及估计得到所对应系统是拉回渐近紧的,最终可得出原系统存在随机吸引子.
Abstract:
The attractor for non-autonomous strongly damped stochastic wave equation with multiplicative noise on unbounded domains is studied.By using the uniform estimates and decomposition technique of the solutions for transformed system,the pullback asymptotic compactness of the corresponding system is obtained,finally getting the existence of random attractor for original system.

参考文献/References:

[1] Caraballo T,Langa J A,Melnik V S,et al.Pullback attractors for nonautonomous and stochastic multivalued dynamical systems[J].Set-Valued Analysis,2003,11(2):153-201.
[2] Duan Jinqiao,Schmalfuss B.The 3D quasigeostrophic fluid dynamics under random forcing on boundary[J].Communications in Mathematical Sciences,2003,1(1):133-151.
[3] Wang Bixiang.Sufficient and necessary criteria for existence of pullback attractors for noncompact random dynamical systems[J].Journal of Differential Equations,2012,253(5):1544-1583.
[4] Wang Bixiang.Random attractors for non-autonomous stochastic wave equations with multiplicative noise[J].Discrete and Continuous Dynamical Systems,2014,34(1):269-300.
[5] Wang Bixiang.Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms[J].Stochastics and Dynamics,2014,14(4):475-192.
[6] Wang Zhaojuan,Zhou Shengfan,Gu Anhui.Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains[J].Nonlinear Analysis:Real World Applications,2011,12(6):3468-3482.
[7] Crauel H,Flandoli F.Attractors for random dynamical systems[J].Probability Theory and Related Fields,1994,100(3):365-393.
[8] Crauel H,Flandoli F.Random attractors[J].Journal of Dynamics and Differential Equations,1997,9(2):307-341.
[9] Li Hongyan,You Yuncheng,Tu Junyi.Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping[J].Journal of Differential Equations,2015,258(1):148-190.
[10] Lu Kening,Schmalfuss B.Invariant manifolds for stochastic wave equations[J].Journal of Differential Equations,2007,236(2):460-492.
[11] Wang Zhaojuan,Zhou Shengfan.Random attractor for stochastic non-autonomous damped wave equation with critical exponent[J].Discrete and Continuous Dynamical Systems,2017,37(1):545-573.
[12] Wang Zhaojuan,Zhang Lingping.Finite fractal dimension of random attractor for stochastic non-autonomous strongly damped wave equation[J].Computers and Mathematics with Applications,2018,75(9):3343-3357.
[13] Wang Bixiang.Asymptotic behavior of stochastic wave equations with critical exponents on R3[J].Transactions of the American Mathematical Society,2008,363(7):3639-3663.
[14] Fan Xiaoming,Wang Yaguang.Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise[J].Stochastic Analysis and Applications,2007,25(2):381-396.
[15] Yang Meihua,Duan Jinqiao,Kloeden P.Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise[J].Nonlinear Analysis:Real World Applications,2010,12(1):464-478.
[16] Fan Xiaoming.Random attractors for damped stochastic wave equations with multiplicative noise[J].International Journal of Mathematics,2008,19(4):421-437.
[17] Belleri V,Pata V.Attractors for semilinear strongly damped wave equations on R3[J].Discrete and Continuous Dynamical Systems:Series A,2012,7(4):719-735.

备注/Memo

备注/Memo:
收稿日期:2020-12-20
基金项目:国家自然科学基金(11571092)资助项目.
通信作者:李晓军(1970—),男,甘肃定西人,教授,博士,博士生导师,主要从事非线性泛函分析、随机发展方程研究.E-mail:lixjun05@hhu.edu.cn
更新日期/Last Update: 2021-10-10