[1]切洛太,覃 锋*,傅 丽.n-一致模的构造(Ⅰ)[J].江西师范大学学报(自然科学版),2022,(01):1-6.[doi:10.16357/j.cnki.issn1000-5862.2022.01.01]
 QIE Luotai,QIN Feng*,FU Li.The Construction Methods(Ⅰ)of n-Uninorms[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(01):1-6.[doi:10.16357/j.cnki.issn1000-5862.2022.01.01]
点击复制

n-一致模的构造(Ⅰ)()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年01期
页码:
1-6
栏目:
数学与应用数学
出版日期:
2022-01-25

文章信息/Info

Title:
The Construction Methods(Ⅰ)of n-Uninorms
文章编号:
1000-5862(2022)01-0001-06
作者:
切洛太1覃 锋12*傅 丽1
1.青海民族大学数学与统计学院,青海 西宁 810007; 2.江西师范大学数学与统计学院,江西 南昌 330022
Author(s):
QIE Luotai1QIN Feng12*FU Li1
1.School of Mathematics and Statistics,Qinghai Minzu University,Xining Qinghai 810007,China; 2.School of Mathematics and Statistics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
模糊连接词 n-一致模 一致模 序和
Keywords:
fuzzy connective n-uninorms uninorms ordinal sum
分类号:
O 159; B 815.6
DOI:
10.16357/j.cnki.issn1000-5862.2022.01.01
文献标志码:
A
摘要:
借助Clifford半群序和理论,该文提出了2种n-一致模的构造方法.基于这些构造方法,可以构造许多新的n-一致模.利用这些构造方法,证明了对具有连续基础算子n-一致模的分解定理的逆命题都成立.
Abstract:
By means of Clifford's semigroup ordinal sum theory,two kinds of methods to constructing a new n-uninorm are given.Based on these methods,there are a number of new n-uninorms.Moreover,applying these results,it is proved that the converse propositions of all decomposed theorems for all n-uninorms with continuous underlying functions hold.

参考文献/References:

[1] AKELLA P.Structure of n-uninorms [J].Fuzzy Sets and Systems,2007,158(15):1631-1651.
[2] ZONG Wenwen,SU Yong,LIU Huawen,et al.On the structure of 2-uninorms [J].Information Sciences,2018,467:506-527.
[3] CALVO T,DE BAETS B,FODOR J.The functional equations of Frank and Alsina for uninorms and nullnorms [J].Fuzzy Sets and Systems,2001,120(3):385-394.
[4] SUN Feng,QU Xiaobing,ZHU Ling.On the migrativity of uni-nullnorms [J].Journal of Intelligent and Fuzzy Systems,2019,37(4):5269-5279.
[5] SUN Feng,WANG Xueping,QU Xiaobing.Uni-nullnorms and null-uninorms [J].Journal of Intelligent and Fuzzy Systems,2017,32(3):1969-1981.
[6] SUN Feng,WANG Xueping,QU Xiaobing.Characterizations of uni-nullnorms with continuous Archimedean underlying t-norms and t-conorms [J].Fuzzy Sets and Systems,2018,334(1):24-35.
[7] MESIAROV - ZEM NKOV A.Characterization of idempotent n-uninorms [J].Fuzzy Sets and Systems,2022,427(1):1-22.
[8] MESIAROV -ZEM NKOV A.The n-uninorms with continuous underlying t-norms and t-conorms [J].International Journal of General Systems,2021,50(1):92-116.
[9] MESIAROV -ZEM NKOV A.Characterizing functions of n-uninorms with continuous underlying functions [EB/OL].(2021-02-04)[2021-10-19].https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9347748.
[10] WANG Gang,QIN Feng,LI Wenhuang.Distributivity and conditional distributivity for uni-nullnorms [J].Fuzzy Sets and Systems,2019,372(1):34-49.
[11] DRYG S P.Discussion of the structure of uninorms [J].Kybernetika,2005,41(2):213-226.
[12] FODOR J C,YAGER R R,RYBALOV A.Structure of uninorms [J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,1997,5(4):411-127.
[13] KLEMENT E P,MESIAR R,PAP E.Triangular norms [M].Dordrecht:Kluwer Academic Publishers,2000.
[14] CLIFFORD A H.Naturally totally ordered commutative semigroups [J].American Journal of Mathematics,1954,76(3):631-646.
[15] YAGER R R,RYBALOV A.Uninorm aggregation operators [J].Fuzzy Sets and Systems,1996,80(1):111-120.
[16] AKELLA P.C-sets of n-uninorms [J].Fuzzy Sets and Systems,2009,160(1):1-21.

相似文献/References:

[1]杨 丽,覃 锋*.构造模糊蕴涵的新序和方法[J].江西师范大学学报(自然科学版),2018,(03):254.[doi:10.16357/j.cnki.issn1000-5862.2018.03.07]
 YANG Li,QIN Feng*.The Novel Method of Constructing Fuzzy Implications by Ordinal Sum[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(01):254.[doi:10.16357/j.cnki.issn1000-5862.2018.03.07]

备注/Memo

备注/Memo:
收稿日期:2021-09-24
基金项目:国家自然科学基金(11971210,61967008),江西省主要学科学术和技术带头人培养计划(20171ACB20010)和江西省自然科学基金(20192BAB201009)资助项目.
通信作者:覃 锋(1976—),男,湖北鹤峰人,教授,博士,博士生导师,主要从事模糊逻辑与模糊控制研究.E-mail:qinfeng923@163.com
更新日期/Last Update: 2022-01-25