[1]杨 芮,张艳慧*,温 伟.基于双指数跳跃-扩散过程的欧式一篮子期权定价[J].江西师范大学学报(自然科学版),2022,(01):12-17.[doi:10.16357/j.cnki.issn1000-5862.2022.01.03]
 YANG Rui,ZHANG Yanhui*,WEN Wei.The European Style Basket of Option Based on Double Exponential Jump-Diffusion Process[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(01):12-17.[doi:10.16357/j.cnki.issn1000-5862.2022.01.03]
点击复制

基于双指数跳跃-扩散过程的欧式一篮子期权定价()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年01期
页码:
12-17
栏目:
数学与应用数学
出版日期:
2022-01-25

文章信息/Info

Title:
The European Style Basket of Option Based on Double Exponential Jump-Diffusion Process
文章编号:
1000-5862(2022)01-0012-06
作者:
杨 芮1张艳慧1*温 伟2
1.北京工商大学数学与统计学院,北京 100048; 2.北京工商大学经济学院,北京 100048
Author(s):
YANG Rui1ZHANG Yanhui1*WEN Wei2
1.School of Mathematics and Statistics,Beijing Technology and Business University,Beijing 100048,China; 2.School of Economics,Beijing Technology and Business University,Beijing 100048,China
关键词:
一篮子期权 双指数跳跃-扩散过程 鞅定价方法
Keywords:
basket options the double-exponential jump-diffusion process the martingale property
分类号:
O 211.6; F 224.7
DOI:
10.16357/j.cnki.issn1000-5862.2022.01.03
文献标志码:
A
摘要:
该文建立了具有相关性的多标的资产服从双指数跳跃-扩散过程的价格演化模型,并利用鞅方法和Ito公式得到了在双指数跳跃-扩散过程下的一篮子欧式看涨期权和一篮子欧式看跌期权的定价公式,可用于处理一篮子期权的定价问题.
Abstract:
The price evolution model of correlated multi-subject assets obeying the double exponential jump-diffusion process is established.And the pricing formula of basket of European call options and basket of European put options under the double exponential jump-diffusion process is obtained by using martingale and the Ito formula,which can be used to deal with the pricing of basket options.

参考文献/References:

[1] BACHELIER L.Theorie de la Speculation [J].Annales Scientifiques de l'Eecole Normale Superieure,1900,17(5):21-86.
[2] BLACK F,SCHOLES M.The pricing of options and corporate liabilities [J].Journal of Political Economy,1973,81(3):637-664.
[3] ANDREW W L,MACKINLAY C A.Stock market prices do not follow random walks:evidence from a simple specification test [J].The Review of Financial Studies Volume,1988,1(1):41-66.
[4] MERTON R C.Option pricing when underlying stock returns are discontinuous [J].Journal of Financial Economics,1976,3(1/2):125-144.
[5] KOU STEVEN G.A jump-diffusion model for option pricing [J].Management Science,2002,48(8):1086-1101.
[6] 姜礼尚.期权定价的数学模型和方法 [M].北京:高等教育出版社,2008.
[7] HUI C H,LO C F,YUEN P H.Comment on pricing double barrier options using Laplace transforms by Antoon Pelsser [J].Finance and Stochastics,2000,4(1):105-107.
[8] 谭键,戴钰.基于蒙特卡罗模拟的多标的资产期权定价研究 [J].财经理论与实践,2012,33(178):45-48.
[9] 安飒.篮子期权定价的蒙特卡罗方法研究 [J].中国证券期货,2010(2):27-30.
[10] ZHOU Jinke,WANG Xiaolu.Accurate closed-form approximation for pricing Asian and basket options [J].Applied Stochastic Models in Business and Industry,2008,24(4):343-358.
[11] HARRISON J M,KREPS D M.Martingales and arbitrage in multiperiod securities markets [J].Journal of Economic Theory,1979,20(3):381-408.
[12] HARRISON J M,PLISKA S R.Martingales and stochastic integrals in the theory of continuous trading [J].Stochastic Processes and Their Application,1981,11(3):215-260.
[13] DALANG R C,MORTON A,WILLINGER W.Equivalent martingale measures and no-arbitrage in stochastic securities market models [J].Stochastics and Stochastics Reports,1990,29(2):185-201.
[14] SCHACHERMAYER W.A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time [J].Insurance:Mathematics and Economics,1992,11(4):249-257.
[15] KABANOV Y M,KRAMKOV D O.No-arbitrage and equivalent martingale measures:an elementary proof of the Harrison-Pliska theorem [J].Theory of Probability and Its Applications,1994,39(3):523-527.
[16] 范玉莲,孙志宾.跳跃-扩散模型中期权定价的倒向随机微分方程方法及等价概率鞅测度 [J].应用数学学报,2009,32(4):673-681.
[17] 闫海峰,刘三阳.带有Poisson跳的股票价格模型的期权定价 [J].工程数学学报,2003,20(2):35-40.
[18] 李文汉.基于Esscher变换的期权定价 [D].石家庄:河北师范大学,2018.
[19] 史蒂文·E·施里夫.金融随机分析 [M].陈启宏,陈迪华,译.上海:上海财经大学出版社,2008.
[20] 杨云霞.基于双指数跳扩散过程的期权定价及其参数估计 [D].武汉:武汉理工大学,2006.

备注/Memo

备注/Memo:
收稿日期:2021-05-19
基金项目:国家自然科学基金(11971042)资助项目.
通信作者:张艳慧(1975—),女,河北承德人,教授,博士,主要从事金融统计,函数论的位势理论研究.E-mail:zhangyanhui@th.btbu.edu.cn
更新日期/Last Update: 2022-01-25