参考文献/References:
[1] MANTEGNA R N.Hierarchical structure in financial markets [J].The European Physical Journal B:Condensed Matter and Complex Systems,1999,11(1):193-197.
[2] BOGINSKI V,BUTENKO S,PARDALOS P M.Statistical analysis of financial networks [J].Computational Statistics and Data Analysis,2005,48(2):431-443.
[3] BRIDA J G,RISSO W A.Multidimensional minimal spanning tree:the Dow Jones case [J].Physica A:Statistical Mechanics and Its Applications,2008,387(21):5205-5210.
[4] TEFAN L,VÝROST T,BAUMÖHL E.Stock market networks:the dynamic conditional correlation approach [J].Physica A:Statistical Mechanics and Its Applications,2012,391(16):4147-4158.
[5] ISOGAI T.Dynamic correlation network analysis of financial asset returns with network clustering [J].Applied Network Science,2017,2(1):1-10.
[6] SENSOY A,TABAK B M.Dynamic spanning trees in stock market networks:the case of Asia-Pacific [J].Physica A:Statistical Mechanics and Its Applications,2014,414:387-402.
[7] WANG Gangjin,XIE Chi.Correlation structure and dynamics of international real estate securities markets:a network perspective [J].Physica A:Statistical Mechanics and Its Applications,2015,424:176-193.
[8] KANTAR E,KESKIN M,DEVIREN B.Analysis of the effects of the global financial crisis on the Turkish economy,using hierarchical methods [J].Physica A:Statistical Mechanics and Its Applications,2012,391(7):2342-2352.
[9] SHIROKIKH O,PASTUKHOV G,BOGINSKI V,et al.Computational study of the US stock market evolution:a rank correlation-based network model [J].Computational Management Science,2013,10(2/3):81-103.
[10] NOBI A,MAENGS E,HA G G,et al.Structural changes in the minimal spanning tree and the hierarchical network in the Korean stock market around the global financial crisis [J].Journal of the Korean Physical Society,2015,66(8):1153-1159.
[11] 李俊照,郭坤,姚宏亮,等.基于马尔可夫毯时序回归模型的房地产板块指数预测 [J].系统工程理论与实践,2014,34(4):817-825.
[12] 宁建楠,易文德.金融危机对中国股市各行业板块间相依结构的影响 [J].系统工程,2015,33(11):10-17.
[13] 刘井建,焦怀东,南晓莉.危机冲击背景下股票市场风险联动非线性 [J].系统工程,2015,33(12):16-22.
[14] 马丹,刘丽萍,陈坤.关联效应还是传染效应 [J].统计研究,2016,33(2):99-106.
[15] 曾裕峰,简志宏,彭伟.中国金融业不同板块间风险传导的非对称性研究:基于非对称MVMQ-CAViaR模型的实证分析 [J].中国管理科学,2017,25(8):58-67.
[16] 庄新田,张鼎,苑莹,等.中国股市复杂网络中的分形特征 [J].系统工程理论与实践,2015,35(2):273-282.
[17] 李岸,粟亚亚,乔海曙.中国股票市场国际联动性研究:基于网络分析方法 [J].数量经济技术经济研究,2016,33(8):114-128.
[18] 王荣森,陈阳.股灾前后中小板上市公司网络结构对比研究:基于最小生成树和聚类分析方法 [J].哈尔滨工业大学学报(社会科学版),2016,18(5):133-140.
[19] 黄飞雪,赵昕,侯铁珊.基于最小生成树的上证50指数分层结构 [J].系统工程,2009,27(1):71-76.
[20] 谢邦昌,游涛.金融危机前后中信行业指数联动效应及其社团结构比较 [J].商业经济与管理,2015(1):80-87.
[21] ENGLE R.Dynamic conditional correlation:a simple class of multivariate generalized autoregressive conditional heteroskedasticity models [J].Journal of Business and Economic Statistics,2002,20(3):339-350.
[22] TSE C K,LIU Jing,LAU F C M.A network perspective of the stock market [J].Journal of Empirical Finance,2010,17(4):659-667.
[23] BRIDA J G,RISSO W A.Hierarchical structure of the German stock market [J].Expert Systems with Applications,2010,37(5):3846-3852.