[1]李守斐,李 晗,朱冠旭,等.基于动态网络方法的中国行业板块联动效应分析[J].江西师范大学学报(自然科学版),2022,(01):25-36.[doi:10.16357/j.cnki.issn1000-5862.2022.01.05]
 LI Shoufei,LI Han,ZHU Guanxu,et al.The Analysis on Linkage Effect of Chinese Industry Sector Based on Dynamic Network Method[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(01):25-36.[doi:10.16357/j.cnki.issn1000-5862.2022.01.05]
点击复制

基于动态网络方法的中国行业板块联动效应分析()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年01期
页码:
25-36
栏目:
数学与应用数学
出版日期:
2022-01-25

文章信息/Info

Title:
The Analysis on Linkage Effect of Chinese Industry Sector Based on Dynamic Network Method
文章编号:
1000-5862(2022)01-0025-12
作者:
李守斐1李 晗2朱冠旭3盛积良4*
1.泰康养老保险股份有限公司江西分公司,江西 南昌 330038; 2.中国人民银行郴州市中心支行,湖南 郴州 423000; 3.南昌三中高中部,江西 南昌 330029; 4.江西财经大学统计学院,江西 南昌 330013
Author(s):
LI Shoufei1LI Han2ZHU Guanxu3SHENG Jiliang4
1.Jiangxi Branch Taikang Endowment Insurance Corporation Limited,Jiangxi Nanchang 330038,China; 2.Chenzhou Central Sub Branch,the People's Bank of China,Chenzhou Hunan 423000,China; 3.High School Department,No.3 Middle School of Nanchang,Jiangxi Nanchang 330029,China; 4.School of Statistics,Jiangxi University of Finance and Economics,Jiangxi Nanchang 330013,China
关键词:
行业板块联动性 DCC-MVGARCH 动态最小生成树网络 Tucker分解
Keywords:
industry sector linkage DCC-MVGARCH dynamic mst network Tucker decomposition
分类号:
F 830.91
DOI:
10.16357/j.cnki.issn1000-5862.2022.01.05
文献标志码:
A
摘要:
该文通过DCC-MVGARCH模型和网络分析方法,建立动态最小生成树网络,利用Tucker分解和K-均值聚类方法,将动态网络聚集成3个代表网络,并生成分层结构树图,对在2007—2018年包括次贷危机、“2015年股市波动”和中美贸易战等多个股市重大事件时间段内的中国行业板块联动性进行实证分析.研究结果表明:行业板块联动性长期处于波动状态,在股价快速上涨、下跌时,联动性的波动尤为剧烈,但在代表网络中具有重要影响力的节点变化不大,分层结构树图聚集状态变化较小,行业板块联动网络基本稳定; 在中国股票市场的网络结构中生产制造业处于核心地位,金融业处于边缘地位.
Abstract:
The dynamic minimum spanning tree network is established through DCC-MVGARCH model and network analysis method,and the dynamic network is integrated into three representative networks by using Tucker decomposition and K-means clustering method and hierarchical tree diagram is generated.The empirical analysis of China's industry sector linkages is made during the period from 2007 to 2018,including the subprime mortgage crisis,the "2015 stock market fluctuations" and the trade war.The results show that the linkage of industry sector has been in a state of volatility for a long time,when the stock price rises and falls rapidly,the linkage fluctuation is particularly severe,but the nodes with important influence in the linkage network have not changed much,hierarchical tree graph aggregation state change less,the linkage network between the industry sectors is basically stable.In the network structure of China's stock market, manufacturing industry is at the core,and the financial industry is at the marginal position.

参考文献/References:

[1] MANTEGNA R N.Hierarchical structure in financial markets [J].The European Physical Journal B:Condensed Matter and Complex Systems,1999,11(1):193-197.
[2] BOGINSKI V,BUTENKO S,PARDALOS P M.Statistical analysis of financial networks [J].Computational Statistics and Data Analysis,2005,48(2):431-443.
[3] BRIDA J G,RISSO W A.Multidimensional minimal spanning tree:the Dow Jones case [J].Physica A:Statistical Mechanics and Its Applications,2008,387(21):5205-5210.
[4] TEFAN L,VÝROST T,BAUMÖHL E.Stock market networks:the dynamic conditional correlation approach [J].Physica A:Statistical Mechanics and Its Applications,2012,391(16):4147-4158.
[5] ISOGAI T.Dynamic correlation network analysis of financial asset returns with network clustering [J].Applied Network Science,2017,2(1):1-10.
[6] SENSOY A,TABAK B M.Dynamic spanning trees in stock market networks:the case of Asia-Pacific [J].Physica A:Statistical Mechanics and Its Applications,2014,414:387-402.
[7] WANG Gangjin,XIE Chi.Correlation structure and dynamics of international real estate securities markets:a network perspective [J].Physica A:Statistical Mechanics and Its Applications,2015,424:176-193.
[8] KANTAR E,KESKIN M,DEVIREN B.Analysis of the effects of the global financial crisis on the Turkish economy,using hierarchical methods [J].Physica A:Statistical Mechanics and Its Applications,2012,391(7):2342-2352.
[9] SHIROKIKH O,PASTUKHOV G,BOGINSKI V,et al.Computational study of the US stock market evolution:a rank correlation-based network model [J].Computational Management Science,2013,10(2/3):81-103.
[10] NOBI A,MAENGS E,HA G G,et al.Structural changes in the minimal spanning tree and the hierarchical network in the Korean stock market around the global financial crisis [J].Journal of the Korean Physical Society,2015,66(8):1153-1159.
[11] 李俊照,郭坤,姚宏亮,等.基于马尔可夫毯时序回归模型的房地产板块指数预测 [J].系统工程理论与实践,2014,34(4):817-825.
[12] 宁建楠,易文德.金融危机对中国股市各行业板块间相依结构的影响 [J].系统工程,2015,33(11):10-17.
[13] 刘井建,焦怀东,南晓莉.危机冲击背景下股票市场风险联动非线性 [J].系统工程,2015,33(12):16-22.
[14] 马丹,刘丽萍,陈坤.关联效应还是传染效应 [J].统计研究,2016,33(2):99-106.
[15] 曾裕峰,简志宏,彭伟.中国金融业不同板块间风险传导的非对称性研究:基于非对称MVMQ-CAViaR模型的实证分析 [J].中国管理科学,2017,25(8):58-67.
[16] 庄新田,张鼎,苑莹,等.中国股市复杂网络中的分形特征 [J].系统工程理论与实践,2015,35(2):273-282.
[17] 李岸,粟亚亚,乔海曙.中国股票市场国际联动性研究:基于网络分析方法 [J].数量经济技术经济研究,2016,33(8):114-128.
[18] 王荣森,陈阳.股灾前后中小板上市公司网络结构对比研究:基于最小生成树和聚类分析方法 [J].哈尔滨工业大学学报(社会科学版),2016,18(5):133-140.
[19] 黄飞雪,赵昕,侯铁珊.基于最小生成树的上证50指数分层结构 [J].系统工程,2009,27(1):71-76.
[20] 谢邦昌,游涛.金融危机前后中信行业指数联动效应及其社团结构比较 [J].商业经济与管理,2015(1):80-87.
[21] ENGLE R.Dynamic conditional correlation:a simple class of multivariate generalized autoregressive conditional heteroskedasticity models [J].Journal of Business and Economic Statistics,2002,20(3):339-350.
[22] TSE C K,LIU Jing,LAU F C M.A network perspective of the stock market [J].Journal of Empirical Finance,2010,17(4):659-667.
[23] BRIDA J G,RISSO W A.Hierarchical structure of the German stock market [J].Expert Systems with Applications,2010,37(5):3846-3852.

备注/Memo

备注/Memo:
收稿日期:2021-09-08
基金项目:国家自然科学基金(71973056,71561011)资助项目.
通信作者:盛积良(1972—),男,江西余干人,教授,博士,博士生导师,主要从事金融工程与风险管理、金融计量与金融统计等研究.E-mail:shengjiliang@163.com
更新日期/Last Update: 2022-01-25