参考文献/References:
[1] 周荣翔,贾修一.中文反语识别特征分析 [J].山东大学学报(工学版),2019,49(1):41-46.
[2] KAROUI J,BENAMARA F,MORICEAU V.Towards a multilingual system for automatic irony detection [EB/OL].[2021-06-17].https://onlinelibrary.wiley.com/doi/10.1002/9781119671183.ch5.
[3] JI Tao,WU Yuanbin,LAN Man.Graph-based dependency parsing with graph neural networks [EB/OL].[2021-06-17].https://aclanthology.org/P19-1237/.
[4] DOZAT T,MANNING C D.Deep biaffine attention for neural dependency parsing [EB/OL].[2021-06-17].http://arxiv.org/pdf/1611.01734.
[5] ZHANG Yuan,ZHANG Yue.Tree communication models for sentiment analysis [EB/OL].[2021-06-17].https://aclanthology.org/P19-1342/.
[6] KULMIZEV A,LHONEUX M D,GONTRUM J,et al.Deep contextualized word embeddings in transition-based and graph-based dependency parsing a tale of two parsers revisited [EB/OL].[2021-06-17].https://arxiv.org/abs/1908.07397.
[7] ZHANG Zhisong,MA Xuezhe,HOVY E.An empirical investigation of structured output modeling for graph-based neural dependency parsing [EB/OL].[2021-06-17].https://aclanthology.org/P19-1562/.
[8] LHONEUX M D,BALLESTEROS M,NIVRE J.Recursive subtree composition in LSTM-based dependency parsing [EB/OL].[2021-06-17].https://arxiv.org/abs/1902.09781.
[9] FALENSKA A,KUHN J.The(non-)utility of structural features in BiLSTM-based dependency parsers [EB/OL].[2021-06-17].https://arxiv.org/abs/1905.12676.
[10] GÓMEZ-RODRÍGUEEZ C,VILARES D.Constituent parsing as sequence labeling [EB/OL].[2021-06-17].https://arxiv.org/pdf/1810.08994.pdf.
[11] VILARES D,ABDOU M.Better,faster,stronger sequence tagging constituent parsers [EB/OL].[2021-06-17].https://arxiv.org/abs/1902.10985.
[12] 滕少华,涂宏俊,刘冬宁.基于子结构逻辑的不确定性语义时态查询技术研究 [J].江西师范大学学报(自然科学版),2017,41(6):645-650.
[13] 罗春春.基于情感词典和机器人学习的微博情感极性分类策略研究 [D].太原:太原理工大学,2020.
[14] CAI Yi,YANG Kai,HUANG Dongping,et al.A hybrid model for opinion mining based on domain sentiment dictionary [EB/OL].[2021-06-17].https://doi.org/10.1007/s13042-017-0757-6.
[15] 徐雄飞,徐凡,王明文,等.中文微博句子倾向性分类中特征抽取研究 [J].江西师范大学学报(自然科学版),2015,39(3):290-296.
[16] 李文亮,杨秋翔,秦权.多特征混合模型文本情感分析方法 [J].计算机工程与应用,2021(19):1-12.
[17] 徐绪堪,周泽聿.基于多尺度BiLSTM-CNN的微信推文的情感分类模型及应用研究 [J].情报科学,2021,39(5):130-137.
[18] 蔡曙光,张笑,冯廷勇.“先扬后抑”vs.“先抑后扬”:反馈顺序对决策信心建构的影响 [J].心理科学,2016,39(3):686-692.
[19] 宋国民,张三强,贾奋励.基于GATE的中文时间信息抽取方法 [J].测绘工程,2021,30(1):1-5.
[20] 齐梅,胡敏.基于多方向空间词袋模型的物体识别 [J].计算机工程与应用,2017,53(7):197-201.
[21] 耿晓伟,姜宏艺.调节定向和调节匹配对情感预测中影响偏差的影响 [J].心理学报,2017,49(12):1537-1547.
[22] 易显飞,胡景谱.当代新兴“情感增强技术”的界定、类型与特征 [J].科学技术哲学研究,2019,36(3):70-75.
[23] 牛银菊,马崇武.索赔次数服从泊松负二项分布的风险模型的破产概率 [J].江西师范大学学报(自然科学版),2020,44(5):530-533.
[24] 方澄,李贝,韩萍.基于全局特征图的半监督微博文本情感分类 [J].信号处理,2021,37(6):1066-1074.
相似文献/References:
[1]唐宇坤,邓 松*,许梦雅,等.基于几何特征的学生评教数据离群点检测算法[J].江西师范大学学报(自然科学版),2021,(03):292.[doi:10.16357/j.cnki.issn1000-5862.2021.03.11]
TANG Yukun,DENG Song*,XU Mengya,et al.The Outlier Detection Algorithm for Student Evaluation Data Based on Geometric Features[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(01):292.[doi:10.16357/j.cnki.issn1000-5862.2021.03.11]