[1]陈 航,吴 哲,翁智峰*.SAV方法求解Allen-Cahn方程的数值比较[J].江西师范大学学报(自然科学版),2022,(02):203-209.[doi:10.16357/j.cnki.issn1000-5862.2022.02.13]
 CHEN Hang,WU Zhe,WENG Zhifeng*.The Numerical Comparison of SAV Methods for the Allen-Cahn Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(02):203-209.[doi:10.16357/j.cnki.issn1000-5862.2022.02.13]
点击复制

SAV方法求解Allen-Cahn方程的数值比较()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年02期
页码:
203-209
栏目:
数学与应用数学
出版日期:
2022-03-25

文章信息/Info

Title:
The Numerical Comparison of SAV Methods for the Allen-Cahn Equation
文章编号:
1000-5862(2022)02-0203-07
作者:
陈 航吴 哲翁智峰*
华侨大学数学科学学院,福建 泉州 362021
Author(s):
CHEN HangWU ZheWENG Zhifeng*
School of Mathematics Science,Huaqiao University,Quanzhou Fujian 362021,China
关键词:
标量辅助变量(SAV) 有限差分 重心Lagrange插值配点法 离散正弦变换 快速傅里叶变换
Keywords:
scalar auxiliary variables(SAV) finite difference barycentric Lagrange interpolation collocation method discrete sine transform fast Fourier transform
分类号:
O 241.82
DOI:
10.16357/j.cnki.issn1000-5862.2022.02.13
文献标志码:
A
摘要:
该文研究基于标量辅助变量(SAV)格式下求解Allen-Cahn方程的数值比较.首先给出1维Allen-Cahn方程的SAV格式; 然后,对方程的时间方向采用2阶向后差分(BDF2)格式和Crank-Nicolson(CN)格式离散,对方程的空间方向采用重心Lagrange插值配点法和2阶中心差分法离散,用离散正弦变换(DST)、快速傅里叶变换(FFT)求解差分导出的线性代数方程组; 最后,通过数值算例验证重心Lagrange插值配点法是指数收敛,与差分格式比较,配点格式用较少的点就能达到较高的精度且耗时少,并进一步验证几种SAV离散格式都满足能量递减规律.
Abstract:
The numerical comparison of the Allen-Cahn equation based on the SAV approach is studied in this paper.Firstly,tthe SAV scheme of the one-dimensional Allen-Cahn equation is given.Then,the equations are discretized by BDF2 and CN for the time direction,and in the spatial direction using the barycentric Lagrange interpolation collocation method and the second-order central difference method,and DST/FFT are used to solve linear algebraic equations which is derived by the finite difference method.Finally,numerical examples are given to verify the exponential convergence of the barycentric Lagrange interpolation collocation method.Compared with the difference scheme,the collocation scheme can achieve high accuracy with fewer points and less time consuming.Several SAV schemes satisfy the law of energy decreasing.

参考文献/References:

[1] ALLEN S M,CAHN J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metallurgica,1979,27(6):1085-1095.
[2] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal in a population[J].Journal of Mathematical Biology,1981,12(2):237-249.
[3] WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A:Atomic,Molecular,and Optical Physics,1992,45(10):7424-7439.
[4] HAZEWINKEL M,KAASHOEK J F,LEYNSE B.Pattern formation for a one dimensional evolution equation based on Thom's River basin model[M]//KILMISTER C W.Disequilibrium and self-organisation:mathematics and its applications.Dordrecht:Springer,1986:23-46.
[5] KIM JUNSEOK.Phase-field models for multi-component fluid flows[J].Communications in Computational Physics,2012,12(3):613-661.
[6] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J].Computer Physics Communications,2014,185(10):2449-2455.
[7] LI Congying,HUANG Yunqing,YI Nianyu.An unconditionally energy stable second order finite element method for solving the Allen-Cahn equation[J].Journal of Computational and Applied Mathematics,2019,353:38-48.
[8] FENG Xiaobing,LI Yukun.Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow[J].IMA Journal of Numerical Analysis,2015,35(4):1622-1651.
[9] EYRE D J.Unconditionally gradient stable time marching the Cahn-Hilliard equation[J].MRS Online Proceedings Library,1998,529:39-46.
[10] CHEN Longqing,SHEN Jie.Applications of semi-implicit Fourier-spectral method to phase field equations[J].Computer Physics Communications,1998,108(2/3):147-158.
[11] CHOI Jeongwhan,LEE Hyungeun,JEONG Darae,et al.An unconditionally gradient stable numerical method for solving the Allen-Cahn equation[J].Physica A:Statistical Mechanics and Its Applications,2009,388(9):1791-1803.
[12] YANG Xiaofeng,ZHAO Jia,WANG Qi.Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method[J].Journal of Computational Physics,2017,333:104-127.
[13] SHEN Jie,XU Jie,YANG Jiang.The scalar auxiliary variable(SAV)approach for gradient flows[J].Journal of Computational Physics,2018,353:407-416.
[14] LI Xiaoli,SHEN Jie,RUI Hongxing.Energy stability and convergence of SAV block-centered finite difference method for gradient flows[J].Mathematics of Computation,2019,88(319):2047-2068.
[15] SHEN Jie,XU Jie.Unconditionally bound preserving and energy dissipative schemes for a class of Keller-Segel equations[J].SIAM Journal of Numerical Analysis,2020,58(3):1674-1695.
[16] LI Xiaoli,SHEN Jie.Error analysis of the SAV-MAC scheme for the Navier-Stokes equations[J].SIAM Journal of Numerical Analysis,2020,58(5):2465-2491.
[17] HIGHAM N J.The numerical stability of barycentric Lagrange interpolation[J].IMA Journal of Numerical Analysis,2004,24(4):547-556.
[18] 李树忱,王兆清.高精度无网格重心插值配点法:算法、程序及工程应用[M].北京:科学出版社,2012.
[19] 虎晓燕,韩惠丽.重心插值配点法求解分数阶Fredholm积分方程[J].郑州大学学报(理学版),2017,49(1):17-23.
[20] 王兆清,徐子康.基于平面问题的位移压力混合配点法[J].计算物理,2018,35(1):77-86.
[21] 翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.
[22] YI Shichao,YAO Linquan.A steady barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis[J].Numerical Methods for Partial Differential Equations,2019,35(5):1694-1716.
[23] GOLUB G H,VAN LOAN C F.Matrix computations[M].4th ed.Baltimore:Johns Hopkins University Press,2013.
[24] VAN LOAN C.Computational frameworks for the fast Fourier transform[M].Philadelphia:SIAM,1992.

备注/Memo

备注/Memo:
收稿日期:2021-06-08
基金项目:国家自然科学基金(11701197)和中央高校基本科研业务费专项资金(ZQN-702)资助项目.
通信作者:翁智峰(1985—),男,福建莆田人,副教授,博士,主要从事偏微分方程数值计算的研究.E-mail:zfwmath@163.com
更新日期/Last Update: 2022-03-25