参考文献/References:
[1] ELPHICK C,MERON E.Localized structures in surface waves[J].Physical Review A:General Physics,Atomic and Molecular Structure,1989,40(6):3226-3229.
[2] DEUTSC I H,ABRAM I.Reduction of quantum noise in soliton propagation by phase-sensitive amplification[J].Journal of the Optical Society of America B:Optical Physics,1994,11(11):2303-2313.
[3] MCLACHLAN R,PERLMUTTER M.Conformal Hamiltonian systems[J].Journal of Geometry and Physics,2001,39(4):276-300.
[4] BAO Weizhu,JAKSCH D.An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity[J].SIAM Journal on Numerical Analysis,2003,41(4):1406-1426.
[5] JIANG Chaolong,CAI Wenjun,WANG Yushun.Optimal error estimate of a conformal Fourier pseudo-spectral method for the damped nonlinear Schrödinger equation[J].Numerical Methods for Partial Differential Equations,2018,34(4):1422-1454.
[6] JIANG Chaolong,SONG Yongzhong,WANG Yushun.A linearly implicit structure-preserving Fourier pseudo-spectral scheme for the damped nonlinear Schrödinger equation in three dimensions[J].Advances in Computational Mathematics,2020,46(2):2621-2633.
[7] CAI Jiaxiang,ZHANG Haihui.Efficient schemes for the damped nonlinear Schrödinger equation in high dimensions[J].Applied Mathematics Letters,2020,102:106158.
[8] HU Weipeng,DENG Zichen,YIN Tingting.Almost structure-preserving analysis for weakly linear damping nonlinear Schrödinger equation with periodic perturbation[J].Communications in Nonlinear Science and Numerical Simulation,2017,42:298-312.
[9] STRANG G.On the construction and comparison of difference schemes[J].SIAM Journal on Numerical Analysis,1968,5(3):506-517.
[10] MCLACHLAN R I,QUISPEL G R W.Splitting methods[J].Acta Numerica,2002,11:341-434.
[11] LELE S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42.
[12] 贺增甲,孔令华,符芳芳.2维Gross-Pitaevskii方程的分裂高阶紧致差分格式[J].江西师范大学学报(自然科学版),2020,44(6):599-603.
[13] 陈萌,孔令华,王兰.Burgers方程的跳点紧致格式[J].江西师范大学学报(自然科学版),2017,41(5):526-530.
[14] KONG Linghua,LUO Yiyang,WANG Lan,et al.HOC-ADI schemes for two-dimensional Ginzburg-Landau equation in superconductivity[J].Mathematics and Computers in Simulation,2021,190:494-507.
[15] KONG Linghua,KUANG Liqun,WANG Tingchun.Efficient numerical schemes for two-dimensional Ginzburg-Landau equation in superconductivity[J].Discrete and Continuous Dynamical Systems:B,2019,24(12):6325-6347.
[16] 孙志忠.偏微分方程数值解法[M].2版.北京:科学出版社,2012.
相似文献/References:
[1]贺增甲,孔令华*,符芳芳.2维Gross-Pitaevskii方程的分裂高阶紧致差分格式[J].江西师范大学学报(自然科学版),2020,(06):599.[doi:10.16357/j.cnki.issn1000-5862.2020.06.09]
HE Zengjia,KONG Linghua*,FU Fangfang.The Splitting High-Order Compact Difference Scheme for Two-Dimensional Gross-Pitaevskii Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(02):599.[doi:10.16357/j.cnki.issn1000-5862.2020.06.09]