参考文献/References:
[1] UCHAIKIN V V.Fractional derivatives for physicists and engineers[M].Beijing:Higher Education Press,2013:230-240.
[2] TARASOV V.Fractional dynamics:applications of fractional calculus to dynamics of particles,fields and media[M].Beijing:Higher Education Press,2011:163-180.
[3] LI Changpin,ZENG Fanhai.Numerical methods for fractional calculus[M].New York:CRC Press,2015:1-17.
[4] DING Hengfei,LI Changpin.High-order numerical algorithms for Riesz derivatives via constructing new generating functions[J].Journal of Scientific Computing,2017,71(2):759-784.
[5] RAN Maohua,ZHANG Chengjian.A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations[J].Communications in Nonlinear Science and Numerical Simulation,2016,41:64-83.
[6] 刘发旺,庄平辉,刘青霞.分数阶偏微分方程数值方法及其应用[M].北京:科学出版社,2015:320-340.
[7] WANG Junjie,XIAO Aiguo.A efficient conservation difference scheme for fractional Klein-Gordon-Schrödinger equations[J].Applied Mathematics and Computation,2018,320:691-709.
[8] OHTA M.Stability of stationary states for coupled Klein-Gordon-Schrödinger equations[J].Nonlinear Analysis:Theory,Methods & Applications,1996,27(4):455-461.
[9] KONG Linghua,CHEN Meng,YIN Xiuling.A novel kind of efficient symplectic scheme for Klein-Gordon-Schrödinger equation[J].Applied Numerical Mathematics,2019,135:481-496.
[10] HUANG Chunyan,GUO Boling,HUANG Daiwen,et al.Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data[J].Science China:Mathematics,2016,59(7):1345-1366.
[11] WANG Junjie,XIAO Aiguo.Conservative fourier spectral method and numericalinvestigation of space fractional Klein-Gordon-Schrödinger equations[J].Applied Mathematics and Computation,2019,350:348-365.
[12] QUISPEL G R W,MCLAREN D I.A new class of energy-preserving numerical integration methods[J].Journal of Physics A:Mathematical and Theoretical,2008,41(4):045206.
[13]CELLEDONI E,MCLACHLAN R I,OWREN B,et al.On conjugate B-series and their geometric structure[J].Journal of Numerical Analysis,Industrial and Applied Mathematics,2010,5(1/2):85-94.
[14] MCLACHLAN R I,QUISPEL G R W,ROBIDOUX N.Geometric integration using discrete gradients[J].Philosophical Transactions of the Royal Society B Biological Sciences,1999,357(1754):1021-1045.
[15] 李昊辰,孙建强,骆思宇.非线性薛定谔方程的平均向量场方法[J].计算数学学报,2013,35(1):59-66.
[16] JIANG Chaolong,SUN Jianqiang,LI Haochen,et al.A fourth-order AVF method for the numerical integration of sine-Gordon equation[J].Applied Mathematics and Computation,2017,313:144-158.
[17] RAY S S.A new analytical modelling for nonlocal generalized Riesz fractional sine-Gordon equation[J].Journal of King Saud University:Science,2016,28(1):48-54.
[18] WANG Pengde,HUANG Chengming.Structure-preserving numerical methods for the fractional Schrödinger equation[J].Applied Numerical Mathematics,2018,129:137-158.
[19] CHEN Jingbo.Symplectic and multisymplectic Fourierpseudospectral discretizations for the Klein-Gordon equation[J].Letters in Mathematical Physics,2006,75(3):293-305.
相似文献/References:
[1]闫静叶,孙建强.复修正KdV方程的高阶保能量方法[J].江西师范大学学报(自然科学版),2016,40(02):209.
YAN Jingye,SUN Jianqiang.The High Order Energy Preserving Method for the Complex Modified KdV Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(03):209.