[1]刘邱云,王璐璐,黄 涛.一种基于Logistic回归的基本信度分配函数的构造新方法[J].江西师范大学学报(自然科学版),2022,(03):277-281.[doi:10.16357/j.cnki.issn1000-5862.2022.03.10]
 LIU Qiuyun,WANG Lulu,HUANG Tao.The New Method Based on Logistic Regression of Constructing Basic Belief Assignment Function[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(03):277-281.[doi:10.16357/j.cnki.issn1000-5862.2022.03.10]
点击复制

一种基于Logistic回归的基本信度分配函数的构造新方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年03期
页码:
277-281
栏目:
数学与应用数学
出版日期:
2022-05-25

文章信息/Info

Title:
The New Method Based on Logistic Regression of Constructing Basic Belief Assignment Function
文章编号:
1000-5862(2022)03-0277-05
作者:
刘邱云1王璐璐2黄 涛1
1.江西师范大学数学与统计学院,江西 南昌 330022; 2.江西经济管理干部学院财务与金融学院,江西 南昌 330088
Author(s):
LIU Qiuyun1WANG Lulu2HUANG Tao1
1.School of Mathematics and Statistics,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.School of Accounting and Finance,Jiangxi Institute of Economic Administrators,Nanchang Jiangxi 330088,China
关键词:
Logistic回归 基本信度分配函数 加权D-S证据融合 图像分类
Keywords:
Logistic regression basic belief assignment function weighted D-S evidence fusion image classification
分类号:
TP 18
DOI:
10.16357/j.cnki.issn1000-5862.2022.03.10
文献标志码:
A
摘要:
结合Logistic回归分类,该文提出一种新的构造证据理论基本信度分配函数的方法,并将其应用于多特征图像分类.该方法首先以多类Logistic回归分类法输出的后验概率与样本分类正确率建立证据权重系数,然后构造出加权的基本信度分配函数,最后利用加权D-S证据融合判别所属类别.实验结果显示:该方法既能提高图像分类的正确率,又能改正使用单特征分类导致的分类正确率的不稳定的缺点.
Abstract:
Combined with Logistic regression classification,the new method of constructing the basic belief assignment function of evidence theory is presented,and it is applied in the multi-feature image classification.Firstly,the weight coefficient of the evidence is established based on the posterior probability output by multi-class Logistic regression classification method and the samples' classification accuracy.Secondly,the weighted basic belief assignment function is constructed.Finally,the weighted D-S evidence fusion is used to distinguish the category.Experimental results show that the new method can not only improve the accuracy of image classification,but also overcome the instability of classification accuracy caused by single feature classification.

参考文献/References:

[1] 任康,李刚.Logistic回归模型在判别分析中的应用[J].统计与信息论坛,2007,22(6):71-73.
[2] OWEN A B.Empirical likelihood for linear models[J].The Annals of Statistics,1991,19(4):1725-1747.
[3] PATRICK G O W,WANG Chengguan,WU Congxin.Nearly best linear estimations of logistic parameters based on complete ordered statistics[J].Journal of Harbin Institute of Technology(New Series),2001,8(2):178-183.
[4] 杨柏辰,张怡,郭炜.基于Logistic回归模型的企业财务风险诊断研究[J].系统科学学报,2021,29(3):84-87.
[5] 李振杰,韩杰.基于Logistic回归模型的农户土地流转意愿实证分析[J].统计与决策,2019,35(13):110-114.
[6] YAGER R R.On the dempster shafer framework and new combination rules[J].Infromation System,1989,41(2):93-137.
[7] SEVASTIANOV P,DYMOVA L,BARTOSIEWICZ P.A frame work for rule-base evidential reasoning in the interval setting applied to diagnosing type 2 diabetes[J].Expert Systemswith Applications,2012,39(4):4190-4200.
[8] MOKHTARI K,REN Jun,ROBERTS C,et al.Decision support framework for risk management on sea ports and terminals using fuzzy set theory and evidential reasoning aproach[J].Expert Systems with Applications,2012,39(5):5087-5103.
[9] 张春英,冯晓泽,刘凤春,等.基于D-S证据理论的三支决策推理模型[J].模糊系统与数学,2020,34(6):85-98.
[10] 韩崇昭,朱洪艳,段战胜.多源信息融合[M].2版.北京:清华大学出版社,2010.
[11] 李世诚,韩德强,杨艺,等.基于邻域证据场的图像分割算法[C]∥中国自动化学会控制理论专业委员会.第32 届中国控制会议论文集(C卷).西安:西北工业大学出版社,2013:3828-3833.
[12] 童涛,杨桄,李昕,等.基于D-S证据理论的多特征融合SAR图像目标识别方法[J].国土资源遥感,2013,25(2):37-41.
[13] 李新德,杨伟东,DEZERT J.一种飞机图像目标多特征信息融合识别方法[J].自动化学报,2012,38(8):1298-1307.
[14] PETIT-RENAUD S,DENOEUX T.Nonparametric regression analysis of uncertain and imprecise data using belief functions[J].International Journal of Approximate Reasoning,2004,35(1):1-28.
[15] XU Peida,SU Xiaoyan,MAHADEVAN S,et al.A non-parametric method to determine basic probability assignment for classification problems[J].Applied Intelligence,2014,41(3):681-693.
[16] GARRIDO M C,CADENAS J M,BONISSONE P P.A classification and regression technique to handle heterogeneous and imperfect information[J].Soft Computing,2010,14(11):1165-1185.
[17] 韩德强,杨艺,韩崇昭.DS证据理论研究进展及相关问题探讨[J].控制与决策,2014,29(1):1-11.

备注/Memo

备注/Memo:
收稿日期:2021-11-04
基金项目:江西省教育厅科学技术研究(GJJ181392, GJJ191687)资助项目.
作者简介:刘邱云(1976-),女,江西铜鼓人,讲师,主要从事不确定性推理和描述逻辑的研究.Email:lqyxinxiang@126.com
更新日期/Last Update: 2022-05-25