[1]刘维清,彭玉祥.吸引与排斥耦合神经元中的稳定幅度奇异态[J].江西师范大学学报(自然科学版),2022,(04):399-405.[doi:10.16357/j.cnki.issn1000-5862.2022.04.11]
 LIU Weiqing,PENG Yuxiang.The Stable Amplitude Chimera States in the Coupled Neuron Oscillators with the Attractive and Repulsive Coupling[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(04):399-405.[doi:10.16357/j.cnki.issn1000-5862.2022.04.11]
点击复制

吸引与排斥耦合神经元中的稳定幅度奇异态()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年04期
页码:
399-405
栏目:
物理学
出版日期:
2022-07-25

文章信息/Info

Title:
The Stable Amplitude Chimera States in the Coupled Neuron Oscillators with the Attractive and Repulsive Coupling
文章编号:
1000-5862(2022)04-0399-07
作者:
刘维清彭玉祥
江西理工大学理学院,江西 赣州 341000
Author(s):
LIU WeiqingPENG Yuxiang
School of Science,Jiangxi University of Science of Technology,Ganzhou Jiangxi 341000,China
关键词:
幅度奇异态 死亡奇异态 耦合神经元振子
Keywords:
amplitude chimera states chimera death coupled neuron oscillator
分类号:
O 415.5
DOI:
10.16357/j.cnki.issn1000-5862.2022.04.11
文献标志码:
A
摘要:
在耦合振子系统中,表现为具有振幅空间相关性的振子与空间非相关性的振子共存的幅度奇异态与动物半脑睡眠的内在机制密切相关,因其具有初值敏感性和存活时间较短的特点而常被认为是走向系统同步时的过渡态.该文通过在耦合系统中引入吸引与排斥耦合作用,耦合神经元振子系统会随着吸引耦合作用强度的增加从相位奇异态走向稳定的幅度奇异态和死亡奇异态.幅度奇异态的团数随耦合作用半径增加而按幂律关系减小.通过对2个耦合振子分析,发现稳定幅度奇异态的形成机制源于耦合引起的霍普夫分岔而产生振荡中心为一正一负的2个小振幅振荡与原有大振幅振荡的竞争.随着耦合作用的进一步增加,这2个一正一负的小振幅振荡均走向振荡死亡.当耦合半径增加时,它们的竞争最终形成死亡奇异态.
Abstract:
The amplitude chimera,characterized by the coexistence of spatially correlated oscillators and spatially noncoherent oscillators in coupled oscillators,is closely related to the internal mechanism of animal unihemispheric sleep.Because of its characteristics of the sensitivity to the initial values and the short survival time,it is often regarded as a transition state towards system synchronization.By introducing attractive and repulsive coupling,the coupled neuron oscillators may transit from phase chimera state to stable amplitude chimera state and death chimera state with the increment of the attractive coupling intensity.The cluster number of the amplitude chimera states decreases with the increment of the coupling radius with a relation of power law.With the analysis of the model of two coupled oscillators,it is found that the stable amplitude chimera state is formed by the competition between a coupled of small amplitude oscillations with positive and negative rotation center generated by the Hopf bifurcation and the original large amplitude oscillation.With the further increment of the coupling strength,the small amplitude oscillation moves towards the oscillation death with positive value and negative values which may form the amplitude death chimera state with the competition between them as the coupling radius increases.

参考文献/References:

[1] ARENAS A,DÍAZ-GUILERA A,KURTHS J,et al.Synchronization in complex networks[J].Physics Reports,2008,18(3):37111.
[2] JI Peng,PERON T,MENCK P J,et al.Cluster explosive synchronization in complex networks[J].Physical Review Letters,2013,110(21):218701-218701.
[3] BOIS J S,JUELICHER F,GRILL S W.Pattern formation in active fluids[J].Physical Review Letters,2011,100(2):445.
[4] BASU S,GERCHMAN Y,COLLINS C,et al.A synthetic multicellular system for programmed pattern formation[J].Nature,2005,434(7037):1130-1134.
[5] 甘婷婷,吴召艳.带脉冲影响2层网络的同步[J].江西师范大学学报(自然科学版),2021,45(4):362-365.
[6] 刘深泉,张晓函.小世界网络同步的非线性时滞反馈控制[J].江西师范大学学报(自然科学版),2019,43(1):7-12.
[7] RATTENBORG N C,AMLANER C J,LIMA S L.Behavioral,neurophysiological and evolutionary perspectives on unihemispheric sleep[J].Biology,Medicine,2000,24(8):817-842.
[8] RATTENBORG N C,VOIRIN B,CRUZ S M,et al.Evidence that birds sleep in mid-flight[J].Nature Communications,2016,7:12468.
[9] HIZANIDIS J,KOUVARIS N E,ZAMORA-LPEZ G,et al.Chimera-like states in modular neural networks[J].Scientific Reports,2016,6(1):19845.
[10] TINSLEY M R,NKOMO S,SHOWALTER K.Chimera and phase-cluster states in populations of coupled chemical oscillators[J].Nature Physics,2012,8(9):662-665.
[11] MARTENS E A,THUTUPALLIS,FOURRIERE A,et al.Chimera states in mechanical oscillator networks[J].Proceedings of the National Academy of Sciences,2013,110(26):10563-10567.
[12] KAPITANIAK T,KUZMA P,WOJEWODA J,et al.Imperfect chimera states for coupled pendula[J].Scientific Reports,2014,4(1):6379.
[13] GAMBUZZA L V,BUSCARINO A,CHESSARI S,et al.Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators[J].Physical Review E,2014,90(3):32905.
[14] LARGER L,PENKOVSKY B,MAISTRENKO Y.Virtual chimera states for delayed-feedback systems[J].Physical Review Letters,2013,111(5):54103.
[15] SETHIA G C,SEN A,JOHNSTON G L.Amplitude-mediated chimera states[J].Physical Review E,2013,88(4):42917.
[16] SETHIA G C,SEN A.Chimera states:the existence criteria revisited[J].Physical Review Letter,2014,112:144101.
[17] ABRAMS D M,MIROLLO R,STROGATZ S H,et al.Solvable model for chimera states of coupled oscillators[J].Physical Review Letter,2008,101(8):84103.
[18] PREMALATHA K V K,CHANDRASEKAR M S,LAKSHMANAN M.Stable amplitude chimera states in a network of locally coupled Stuart-Landau Oscillator[J].Chaos,2018,28(3):33110.
[19] XIAO Guibao,LIU Weiqing,LAN Yueheng,et al.Stable amplitude chimera states and chimera death in repulsively coupled chaotic oscillators[J].Nonlinear Dynamics,2018, 93(3):1047-1057.
[20] ZAKHAROVA A,KAPELLER M,SCHOLL E.Chimeradeath:symmetry breaking in dynamical networks[J].Physical Review Letter,2014,112(15):154101.
[21] ZAKHAROVA A,KAPELLER M,SCHÖLL E.Amplitude chimeras and chimera death in dynamical networks[J].Journal of Physics(Conference Series),2016,727(1):12018-12018.
[22] GJURCHINOVSKI A,SCHOLL E,ZAKHAROVA A.Control of amplitude chimeras by time delay in oscillator networks[J].Physical Review E,2017,95:42218.
[23] OMELCHENKO I,OLEH E,HÖVEl P,et al.When nonlocal coupling between oscillators becomes stronger:patched synchrony or multichimerastates[J].Physical Review Letters,2013,110(22):224101.
[24] DIANA X T,DAISUKE S,ARIK Y,et al.Bifurcation and Chaos in a model of cardiac early afterdepolarizations[J].Physical Review Letters,2009,102(25):258103.

备注/Memo

备注/Memo:
收稿日期:2022-01-17
基金项目:国家自然科学基金(1175008)和江西省科技厅重点课题(2ACBL201004)资助项目.
作者简介:刘维清(1977—),男,江西兴国人,教授,博士,主要从事理论物理教学与科研工作.E-mail:Lwq_jx@163.com
更新日期/Last Update: 2022-07-25