参考文献/References:
[1] 费建伟,夏志华,余佩鹏,等.人脸合成技术综述 [J].计算机科学与探索,2021,15(11):2025-2047.
[2] FU Yun,GUO Guodong,HUANG T S.Age synthesis and estimation via faces:a survey [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(11):1955-1976.
[3] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets [EB/OL].[2022-06-16].https://arxiv.org/pdf/1406.2661.pdf.
[4] LI Mu,ZUO Wangmeng,ZHANG D.Deep identity-aware transfer offacial attributes [EB/OL].[2022-09-06].https://a-rxiv.org/pdf/1610.05586.pdf.
[5] LIU Rujie,SHEN Wei.Learning residual images for face attribute manipulation [EB/OL].[2022-09-08].https://doc.taixueshu.com/foreign/arXiv161205363.html.
[6] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition [EB/OL].[2022-09-02].https://zhuanlan.zhihu.com/p/370863670.
[7] CHOI Y,CHOI M,KIM M,et al.Stargan:unified generative adversarial networks for multi-domain image-to-image translation [EB/OL].[2022-09-02].https://arxiv.org/pdf/1711.09020.pdf.
[8] LIU Ming,DING Yukang,XIA Ming,et al.Stgan:a unified selective transfer network for arbitrary image attribute editing [EB/OL].[2022-09-08].https://blog.csdn.net/WhaleAndAnt/article/details/104677489.
[9] SHEN Yujun,GU Jinjin,TANG Xiaoou,et al.Interpreting the latent space of gans for semantic face editing [EB/OL].[2022-09-08].https://arxiv.org/abs/1907.10786v3.
[10] YANG Guoxing,FEI Nanyi,DING Mingyu,et al.L2m-gan:learning to manipulate latent space semantics for facial attribute editing [EB/OL].[2022-09-08].https://www.xueshufan.com/publication/3182270175.
[11] WANG Huipo,YU Ning,FRITZ M.Hijack-gan:unintended use of pretrained,black-box gans [EB/OL].[2022-09-08].https://arxiv.org/abs/2011.14107v1.
[12] KHODADADEH S,GHADAR S,MOTIIAN S,et al.Latent to latent:a learned mapper for identity preserving editing of multiple face attributes in StyleGAN-generated images [EB/OL].[2022-09-08].https://blog.csdn.net/xjm850552586/article/details/123656232.
[13] HUANG Xun,BELONGIE S.Arbitrary style transfer in real-time with adaptive instance normalization [EB/OL].[2022-09-08].https://blog.csdn.net/a19990412/article/details/84729453/.
[14] KARRAS T,LAINE S,AILA T.A style-based generator architecture for generative adversarial networks [EB/OL].[2022-09-08].https://blog.csdn.net/NGUever15/article/details/122299290.
[15] KARRAS T,LAINE S,AITTALA M,et al.Analyzing and improving the image quality of stylegan [EB/OL].[2022-09-08].https://blog.csdn.net/lynlindasy/article/details/104495583.
[16] KARRAS T,AITTALA M,LAINE S,et al.Alias-free gene-rative adversarial networks [EB/OL].[2022-09-06].https://arxiv.org/pdf/2106.12423.pdf.
[17] CHOI Y,UH Y,YOO J,et al.Stargan v2:diverse image synthesis for multiple domains [EB/OL].[2022-09-08].https://blog.csdn.net/weixin_43135178/article/details/126828444.
[18] KARRAS T,AILA T,LAINE S,et al.Progressive growingof gans for improved quality,stability,and variation [EB/OL].[2022-09-07].https://arxiv.org/pdf/1710.10196.pdf.
[19] KINGMA D P,WELLING M.Auto-encoding VariationalBayes [EB/OL].[2022-09-07].https://arxiv.org/pdf/1312.6114.pdf.
[20] KINGMA D P,DHARIWAL P.Glow:generative flow withinvertible 1x1 convolutions [EB/OL].[2022-09-09].https://arxiv.org/pdf/1807.03039.pdf.
[21] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation [EB/OL].[2022-09-08].https://ieeexplore.ieee.org/document/7478072.
[22] RONNEBERGER O,FISCHER P,BROX T.U-NET:convolutional networks for biomedical image segmentation [EB/OL].[2022-09-08].https://blog.csdn.net/weixin_36670529/article/details/102809431.
[23] SZEGEDY C,LIU Wei,JIA Yangqing,et al.Going deeper with convolutions [EB/OL].[2022-09-08].https://zhuanlan.zhihu.com/p/158914902.
[24] TAN Mingxing,LE Q V.Mixconv:mixed depthwise convolu-tional kernels [EB/OL].[2022-09-09].https://arxiv.org/pdf/1907.09595.pdf.
[25] LI Duo,YAO Anbang,CHEN Qifeng.Psconv:squeezing feature pyramid into one compact poly-scale convolutional layer [EB/OL].[2022-09-08].https://arxiv.org/abs/2007.06191.
[26] YANG B,BENDER G,LE Q V,et al.CondConv:conditionally parameterized convolutions for efficient inference [EB/OL].[2022-09-10].https://arxiv.org/pdf/1904.04971.pdf.
[27] CHEN Yinpeng,DAI Xiyang,LIU Mengchen,et al.Dynamic convolution:attention over convolution kernels [EB/OL].[2022-09-08].https://blog.csdn.net/m0_47180208/article/details/118570067.
[28] LI Chao,ZHOU Aojun,YAO Anbang.Omni-dimensional dynamic convolution [EB/OL].[2022-09-11].https://arxiv.org/pdf/2209.07947.pdf.
[29] YU Fisher,KOLTUN V.Multi-scale context aggregation by dilated convolutions [EB/OL].[2022-09-11].https://arxiv.org/pdf/1511.07122.pdf.
[30] ZHANG R,ISOLA P,EFROS A A,et al.The unreasonable effectiveness of deep features as a perceptual metric [EB/OL].[2022-09-08].https://arxiv.org/pdf/1801.03924.pdf.
[31] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks [J].Advances in Neural Information Processing Systems,2017,60(6):84-90.