[1]李 羽,孔令华*,罗奕杨.耦合Gross-Pitaevskii方程的高效保质量守恒格式[J].江西师范大学学报(自然科学版),2023,(02):194-198.[doi:10.16357/j.cnki.issn1000-5862.2023.02.12]
 LI Yu,KONG Linghua*,LUO Yiyang.The Efficient Mass-Preserving Scheme for Coupled Gross-Pitaevskii Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(02):194-198.[doi:10.16357/j.cnki.issn1000-5862.2023.02.12]
点击复制

耦合Gross-Pitaevskii方程的高效保质量守恒格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
194-198
栏目:
出版日期:
2023-03-25

文章信息/Info

Title:
The Efficient Mass-Preserving Scheme for Coupled Gross-Pitaevskii Equations
文章编号:
1000-5862(2023)02-0194-05
作者:
李 羽1孔令华12*罗奕杨1
(1.江西师范大学数学与统计学院,江西 南昌,330022; 2.江西省应用数学中心,江西 南昌 330022)
Author(s):
LI Yu1KONG Linghua12*LUO Yiyang1
(1.School of Mathematics and Statistic,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.Jiangxi Provincial Center for Applied Mathematics,Nanchang Jiangxi 330022,China)
关键词:
耦合Gross-Pitaevskii方程 投影法 高阶紧致格式 质量守恒
Keywords:
coupled Gross-Pitaevskii equation projection method high order compact scheme mass conservation law.
分类号:
O 241.8
DOI:
10.16357/j.cnki.issn1000-5862.2023.02.12
文献标志码:
A
摘要:
该文为耦合Gross-Pitaevskii方程提出了一个新的保质量守恒格式.首先对空间导数利用高阶紧致格式离散得到半离散格式; 然后在时间方向上利用基于外推的Crank-Nicolson格式离散,得到一个半显式的数值格式,然而此格式不能保持GP方程固有的质量守恒,因此,对格式得到的数值解利用投影方法进行修正,使其满足离散质量守恒; 最后通过数值实验验证了该格式具有高精度以及保持质量守恒.
Abstract:
In this paper,the new mass-preserving scheme is proposed for the coupled Gross-Pitaevskii equation.Firstly,the spatial derivative is approximated by high order compact scheme and a semi-discrete scheme is obtained.The temporal derivative is approximated by Crank-Nicolson based extrapolation.Thus,a semi-implicit scheme is obtained.Unforunately this scheme is not mass-preserving.To make up for this,a projection method is used to pull solution back the mass-preserving space.Finaly,some numerical experiments are presented to illustrate high accuracy and mass-presering of the new scheme.

参考文献/References:

[1] ANDERSON M H,ENSHER J R,MATTHEWA M R,et al.Observation of Bose-Einstein condensation in a dilute atomic vapor [J].Science,1995,269(5221):198-201.
[2] DAVIS K B,MEWES M O,ANDREWS M R,et al.Bose-Einstein condensation in a gas of sodium atoms [J].Physical Review Letters,1995,75(22):3969-3973.
[3] 王灯山.外势场中玻色-爱因斯坦凝聚凝聚体的动力学研究 [M].北京:科学出版社,2016.
[4] BAO Weizhu,CAI Yongyong,Mathematical theory and numerical methods for Bose-Einstein condensation [J].Kinetic & Related Models,2013,6(1):1-135.
[5] WANG Tingchun,ZHAO Xiaofei.Optimal l error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions [J].Science China:Mathematics,2014,57(10):2189-2214.
[6] 符芳芳,周媛兰.2维Gross-Pitaevskii方程的辛格式 [J].江西师范大学学报(自然科学版),2016,40(6):599-602.
[7] 贺增甲,孔令华,符芳芳.2 维Gross-Pitaevskii 方程的分裂高阶紧致差分格式 [J].江西师范大学学报(自然科学版),2020,44(6):599-603.
[8] 符芳芳,孔令华,王兰,等.一维Gross-Pitaevskii方程的高阶紧致分裂步多辛格式 [J].计算物理,2018,35(6):657-667.
[9] WANG Lan,CAI Wenjun,WANG Yushun.An energy-preserving scheme for the coupled Gross-Pitaevskii equations [J].Advances in Applied Mathematics and Mechanics,2021,13(1):203-231.
[10] KONG Linghua,HONG Jialin,ZHANG Jingjing.LOD-MS for Gross-Pitaevskii equation in Bose-Einstein condensates [J].Communications in Computational Physics,2013,14(1):219-241.
[11] LELE S K.Compact finite difference schemes with spectral-like resolution [J].Journal of Computational Physics,1992,103(1):16-42.
[12] 陈萌,孔令华,王兰.Burgers方程的跳点紧致格式 [J].江西师范大学学报(自然科学版),2017,41(5):526-530.
[13] 翟步祥,聂涛,薛翔.5次非线性Schr?dinger方程的一个线性化4层紧致差分格式 [J].江西师范大学学报(自然科学版),2019,43(1):35-38,51.
[14] 洪旗,王雨顺,龚跃政.Neumann边界条件下sine-Gordon方程的高效保能量算法 [J].中国科学:数学,2022,52(6):709-728.
[15] HAIRER E,LUBICH C,WANNER G.Geometric numerical integration: structure-preserving algorithms for ordinary differential equations [M].Berlin-Heidelberg:Springer,2006.

备注/Memo

备注/Memo:
收稿日期:2022-08-27
基金项目:国家自然科学基金(11961036),江西省自然科学基金(20224ACB201001)和江西师范大学研究生创新基金(YJ2021068)资助项目.
通信作者: 孔令华(1977—),男,江西石城人, 教授,博士, 博士生导师, 主要从事微分方程数值方法的研究.E-mail:konglh@mail.ustc.edu.cn
更新日期/Last Update: 2023-03-25