[1]魏 涛,安 静*.4阶方程基于混合格式的一种有效的Legendre-Galerkin逼近[J].江西师范大学学报(自然科学版),2023,(06):551-557+570.[doi:10.16357/j.cnki.issn1000-5862.2023.06.01]
 WEI Tao,AN Jing*.The Efficient Legendre-Galerkin Approximation Based on Mixed Schemes for Fourth-Order Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(06):551-557+570.[doi:10.16357/j.cnki.issn1000-5862.2023.06.01]
点击复制

4阶方程基于混合格式的一种有效的Legendre-Galerkin逼近()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年06期
页码:
551-557+570
栏目:
数学与应用数学
出版日期:
2023-11-25

文章信息/Info

Title:
The Efficient Legendre-Galerkin Approximation Based on Mixed Schemes for Fourth-Order Equations
文章编号:
1000-5862(2023)06-0551-07
作者:
魏 涛安 静*
(贵州师范大学数学科学学院,贵州 贵阳 550025)
Author(s):
WEI TaoAN Jing*
(School of Mathematical Sciences,Guizhou Normal University,Guiyang Guizhou 550025,China)
关键词:
4阶问题 混合格式 Legendre-Galerkin逼近 误差估计
Keywords:
fourth order problem mixed scheme Legendre-Galerkin approximation error estimation
分类号:
O 241.8
DOI:
10.16357/j.cnki.issn1000-5862.2023.06.01
文献标志码:
A
摘要:
该文提出了4阶方程基于混合格式的一种有效的Legendre-Galerkin 逼近.首先,通过引入一个辅助函数,将原问题化为等价的2阶混合格式.再引入一类适当的Sobolev空间及其逼近空间,建立了2阶混合格式的弱形式和相应的离散格式; 其次,利用在非一致带权Sobolev空间中正交投影算子的逼近性质,证明了逼近解的误差估计; 另外,利用Legendre多项式的正交性质,构造了在逼近空间中的一组适当的基函数,使得在离散混合变分形式中的质量矩阵和刚度矩阵都是稀疏的,从而能够用共轭梯度法快速地求解.最后,给出了一些数值算例, 数值结果表明了所提出的算法的有效性和高精度性.
Abstract:
In this paper,the efficient Legendre-Galerkin approximation based on a mixed scheme is proposed for fourth-order equations.Firstly,by introducing an auxiliary function,the original problem is transformed into an equivalent second-order mixed scheme.Secondly,by introducing a class of suitable Sobolev spaces and their approximation spaces,the weak forms of the second-order mixed scheme and the corresponding discrete scheme are established.Then by using the approximation properties of orthogonal projection operators in non-uniform weighted Sobolev spaces,the error estimates of the approximation solutions is proved.In addition,the orthogonality of Legendre polynomials is used to construct a set of appropriate basis functions of the approximation space,so that the mass matrix and stiffness matrix in the discrete mixed variational form are all sparse,which can be quickly solved by using the conjugate gradient method.Finally,some numerical examples are given,and the numerical results show the effectiveness and high precision of our algorithm.

参考文献/References:

[1] LI Dong,QIAO Zhonghua.On the stabilization size of semi-implicit Fourier-spectral methods for 3D Cahn-Hilliard equations[J].Communications in Mathematical Scien-ces,2017,15(6):1489-1506.
[2] GUO Ruihan,XU Yan.Semi-implicit spectral deferred correction method based on the invariant energy quadratization approach for phase field problems[J].Communications in Computational Physics,2019,26(1):87-113.
[3] LIU Fei,SHEN Jie.Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations[J].Mathematical Methods in the Applied Sciences,2015,38(18):4564-4575.
[4] SHEN Jie,YANG Xiaofeng.Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J].Discrete and Continuous Dynamical Systems,2010,28(4):1669-1691.
[5] AN Jing,SHEN Jie.Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem[J].Computers & Mathematics with Applications,2015,69(10):1132-1143.
[6] COLTON D,MONK P,SUN Jiguang.Analytical and computational methods for transmission eigenvalues[J].Inverse Problems,2010,26(4):45011.
[7] JI Xia,SUN Jiguang,XIE Hehu.A multigrid method for helmholtz transmission eigenvalue problems[J].Journal of Scientific Computing,2014,60(2):276-294.
[8] SUN Jiguang.Iterative methods for transmission eigenva-lues[J].SIAM Journal on Numerical Analysis,2011,49(5):1860-1874.
[9] YANG Yidu,BI Hai,HAN Jiayu,et al.Mixed methods for the helmholtz transmission eigenvalues[J].SIAM Journal on Scientific Computing,2016,38(3):1383-1403.
[10] REN Shixian,TAN Ting,AN Jing.An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries[J].Computers & Mathematics with Applications,2020,80(5):940-955.
[11] CANUTO C.Eigenvalue approximations by mixed methods[J].RAIRO Analyse Numérique,1978,12(1):27-50.
[12] Mercier B,Osborn J E,Rappaz J,et al.Eigenvalue approximation by mixed and hybrid methods[J].Mathematics of Computation,1981,36(154):427-453.
[13] CHEN Wei,LIN Qun.Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method[J].Applications of Mathematics,2006,51(1):73-88.
[14] YANG Yidu,JIANG Wei.Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the Stokes eigenvalue problem[J].Scien-ce China:Mathematics,2013,56(6):1313-1330.
[15] SHEN Jie,TANG Tao.Spectral and high-order methods with applications[M].Beijing:Science Press,2006.
[16] SHEN Jie,TANG Tao,WANG Lilian.Spectral methods:algorithms, analysis and applications[M].New York:Springer Science & Business Media,2011.
[17] 罗振东.混合有限元法基础及其应用[M].北京:科学出版社,2006.
[18] 李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].北京:科学出版社,2006.

备注/Memo

备注/Memo:
收稿日期:2023-09-18
基金项目:国家自然科学基金(11661022),贵州省科技计划课题(黔科合平台人才〔2017〕5726-39)和贵州师范大学学术新苗基金(黔师新苗〔2021〕A04 号)资助项目.
更新日期/Last Update: 2023-11-25