[1]戴勰,甘登文,丁树良.结合影子题库的选题策略[J].江西师范大学学报(自然科学版),2013,(06):657-660.
 DAI Xie,GAN Deng-wen,DING Shu-liang.New Item Selection Method Combining with Shadow Bank[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(06):657-660.
点击复制

结合影子题库的选题策略()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年06期
页码:
657-660
栏目:
出版日期:
2013-12-31

文章信息/Info

Title:
New Item Selection Method Combining with Shadow Bank
作者:
戴勰;甘登文;丁树良
江西师范大学计算机信息工程学院,江西南昌,330022
Author(s):
DAI Xie;GAN Deng-wen;DING Shu-liang
关键词:
计算机化自适应测验影子题库按a分层按最大信息量分层
Keywords:
computerized adaptive testingshadow banka-STRMIS
分类号:
B841.7;TP301.6
文献标志码:
A
摘要:
高效安全的选题策略是计算机化自适应测验追求的目标.最大Fisher信息量选题测验效率高、能力估计准确,但项目调用不均匀,影响考试的安全;而增设影子题库能较好地平衡项目调用的均匀性.根据上述2种选题策略的优缺点,在0-1评分模型下,结合影子题库得到一种新的选题策略,并在按a分层、按最大信息量分层中引入了新的选题方法.计算机模拟实验显示:新的选题方法效果比较理想.
Abstract:
Computerized Adaptive Testing(CAT)has been in pursuit of the goal is to develop both efficient and safe item selection strategies.It is well known that there is a typical selection strategy called Maximum Fisher Information(MFI).However,this strategy has its advantages together with its downsides.On the one hand,MFI method can obtain high efficiency and accurate estimation of ability; on the other hand,its uneven item selection may lead to the insecurity of examination.Meanwhile,though shadow bank can be a good method of the item called evenly,it may result in the inefficiency of the test.Taking the advantages and disadvantages of the two selection strategies in the 0-1 scored CAT into consideration,a new item selection strategy is proposed in this paper,and pull this new method in a-Stratification(a-STR)and Maximum Information Stratification(MIS).The computer simulation shows that the new method works ideally.

参考文献/References:

[1] 漆书青,戴海琦,丁树良.现代教育与心理测量学原理 [M].北京:高等教育出版社,2002.
[2] 李铭勇,张敏强,简小珠.计算机自适应测验中安全控制方法评述 [J].心理科学进展,2010,18(8):1339-1348.
[3] Van der Linden W J,Bernard P Veldkamp.Constraining item exposure in computerized adaptive testing with shadow tests [J].Journal of Educational and Behavioral Statistics,2004,29(3):273-291.
[4] Van der Linden W J,Bernard P Veldkamp.Conditional item-exposure control in adaptive testing using item-ineligibility probabilities [J].Journal of Educational and Behavioral Statistics,2007,32(4):398-418.
[5] 陈平,丁树良,林海菁,等.等级反应模型下计算机化自适应测验选题策略 [J].心理学报,2006,38(3):461-467.
[6] Chang Huahua,Ying Zhiliang.a-stratified multistage computerized adaptive testing [J].Applied Psychological Measurement,1999,23(3):211-222.
[7] 程小扬,丁树良,严深海,等.引入曝光因子的计算机化自适应测验选题策略 [J].心理学报,2011,43(2):203-212.
[8] Juan Ramón Barrada,Paloma Mazuela,Julio Olea.Maximum information stratification method for controlling item exposure in computerized adaptive testing [J].Psicothema,2006,18(1):156-159.
[9] 程小扬,丁树良,朱隆尹,等.等级评分模型下的最大信息量分层选题策略 [J].江西师范大学学报:自然科学版,2012,36(5):446-451.
[10] 詹沛达,王立君,扬卫敏.引入曝光因子的最大信息量动态分层法 [J].中国考试,2013(2):12-20.
[11] 戴海琦,陈德枝,丁树良,等.多级评分题计算机自适应测验选题策略比较 [J].心理学报,2006,38(5):778-783.
[12] 程小扬,丁树良.子题库题量不平衡的按a分层选题策略 [J].江西师范大学学报:自然科学版,2011,35(1):5-9.
[13] 刘珍,丁树良,林海菁.基于GPCM的CAT选题策略比较 [J].心理学报,2008,40(5):618-625.

相似文献/References:

[1]程小扬,丁树良,朱隆尹,等.等级评分模型下的最大信息量分层选题策略[J].江西师范大学学报(自然科学版),2012,(05):446.
 CHENG Xiao-yang,DING Shu-liang,ZHU Long-yin,et al.The Stratified Item Selection Strategy with Maximal Information under Graded Response Model[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(06):446.
[2]汤楠,丁树良.一阶段选题的最大优先级指标的修正[J].江西师范大学学报(自然科学版),2012,(05):452.
 TANG Nan,DING Shu-liang.Amendment on Maximum Priority Index in One Phase Strategy[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(06):452.
[3]李萍,甘登文,丁树良.自动控制区分度作用的选题策略研究[J].江西师范大学学报(自然科学版),2013,(01):101.
 LI Ping,GAN Deng-wen,DING Shu-liang.The Study of Item Selection Strategy-Automatic Control for the Role of Discrimination Index[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(06):101.
[4]詹沛达,王立君,杨卫敏.引入内容平衡的最大信息量组块分层选题策略[J].江西师范大学学报(自然科学版),2013,(01):106.
 ZHAN Pei-da,WANG Li-jun,YANG Wei-min.The Maximum Information Stratification Method with Content Balancing in Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(06):106.
[5]章沪超,丁树良.各层分布近似的计算机化自适应测验分层选题策略[J].江西师范大学学报(自然科学版),2013,(06):652.
 ZHANG Hu-chao,DING Shu-liang.Similar Distributed Stratification Method for Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(06):652.
[6]章沪超,丁树良,戴勰,等.基于抽样原理的计算机化自适应测验选题策略[J].江西师范大学学报(自然科学版),2014,(02):119.
 ZHANG Hu-chao,DING Shu-liang,DAI Xie,et al.The New Item Selection Strategy for Computerized Adaptive Testing Based on Sampling Principle[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(06):119.
[7]艾国金,甘登文,丁树良.计算机化自适应诊断测验双重约束变长终止规则[J].江西师范大学学报(自然科学版),2015,(05):449.
 AI Guojin,GAN Dengwen,DING Shuliang.The Dual Restrictions Variable-Length Termination Rule in Cognitive Diagnosis Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(06):449.
[8]李 佳,丁树良.基于GRM模型的CAT分层方法在校准误差中的应用研究[J].江西师范大学学报(自然科学版),2018,(04):374.[doi:10.16357/j.cnki.issn1000-5862.2018.04.09]
 LI Jia,DING Shuliang.The Several Stratified Methods of CAT in the Presence of Calibration Error on GRM[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(06):374.[doi:10.16357/j.cnki.issn1000-5862.2018.04.09]
[9]张龙飞,刘 凯,宋 鸽,等.计算机化自适应测验技术在情绪智力智能测评中的初步应用——基于项目反应理论[J].江西师范大学学报(自然科学版),2020,(05):454.[doi:10.16357/j.cnki.issn1000-5862.2020.05.02]
 ZHANG Longfei,LIU Kai,SONG Ge,et al.The Application of CAT on Emotional Intelligence with Item Response Theory[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(06):454.[doi:10.16357/j.cnki.issn1000-5862.2020.05.02]
[10]李 佳,丁树良*,况天昊.区分度与测验进程相匹配的CAT选题策略[J].江西师范大学学报(自然科学版),2021,(04):384.[doi:10.16357/j.cnki.issn1000-5862.2021.04.10]
 LI Jia,DING Shuliang*,KUANG Tianhao.The Item Selection Strategy on Composing the Discrimination with the Test Process in CAT[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(06):384.[doi:10.16357/j.cnki.issn1000-5862.2021.04.10]

备注/Memo

备注/Memo:
国家自然科学基金(30860084,31160203,31100756,31360237,31300876);国家社会科学基金(12BYY055);江西省教育厅科技计划(GJJ13207,GJJ13227,GJJ13226,GJJ13208,GJJ13209,13JY01)
更新日期/Last Update: 1900-01-01