[1]童慧,孔令华,王兰.Dirac方程的紧致分裂多辛格式[J].江西师范大学学报(自然科学版),2014,(05):521-525.
 TONG Hui,KONG Ling-hua,WANG Lan.Compact Splitting Multisymplectic Scheme for Dirac Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(05):521-525.
点击复制

Dirac方程的紧致分裂多辛格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年05期
页码:
521-525
栏目:
出版日期:
2014-10-31

文章信息/Info

Title:
Compact Splitting Multisymplectic Scheme for Dirac Equation
作者:
童慧;孔令华;王兰
江西师范大学数学与信息科学学院,江西 南昌,330022
Author(s):
TONG Hui;KONG Ling-hua;WANG Lan
关键词:
非线性Dirac方程多辛哈密尔顿系统辛欧拉法高阶紧致格式分裂方法
Keywords:
nonlinear Dirac equationsmultisymplectic Hamiltonian systemsympletic Euler methodhigh order compact schemesplit method
分类号:
O241.8
文献标志码:
A
摘要:
把非线性 Dirac 方程分裂成线性和非线性子问题,这些子问题都具有辛或者多辛结构,可以构造它们的辛格式。对于非线性问题,利用点点守恒律可以精确求解。至于线性问题,在空间方向用高阶紧致格式离散,在时间方向用辛欧拉法进一步离散,此格式半显式的。与传统的多辛格式相比,这种格式有计算效率高、计算时间少等优点。
Abstract:
The nonlinear Dirac equation can be split into a linear subproblem and a nonlinear subproblem,and these problems have symplectic or multisymplectic structure,symplectic scheme for them is constructed,then discrete cal-culation is made by symplectic Euler method in time and the high order compact scheme in space. Compared with the traditional multisymplectic scheme,this scheme has high computation efficiency,fast calculation and so on.

参考文献/References:

[1] Alvarez A,Carreras B.Interaction dynamics for the solitary waves of a nonlinear Dirac model [J].Phys Lett A,1981,86(6/7):327-332.
[2] Alvarez A.Linear Crank-Nicholson scheme for nonlinear Dirac equations [J].J Comput Phys,1992,99(3):348-350.
[3] Alvarez A,Kuo P,L Vazquez.The numerical study of a nonlinear one-dimensional Dirac equation [J].Appl Math Comput,1983,13(1):1-15.
[4] Hong Jialin,Li Chun.Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations [J].J Comput Phys,2006,211(2):448-472.
[5] Wang Han,Tang Huazhong.An efficient adaptive mesh redistribution method for a nonlinear Dirac equation [J].J Comput Phys,2007,222(1):176-193.
[6] 王健.Dirac方程的多辛格式 [J].上海交通大学学报:自然科学版,2004,38(5):849-852.
[7] 周祖珍,李淮江.Dirac方程的对称性与守恒定律 [J].云南师范大学学报:自然科学版,1992,12(3):34-36.
[8] 邵嗣烘,汤华中.非线性Dirac方程的数值研究 [J].高等学校计算数学学报,2005,27(S1):123-126.
[9] 丁建,徐君祥,张福保.非周期Dirac方程的稳态解 [J].中国科学:数学,2011,41(6):517-534.
[10] Wang Yushun,Hong Jialin.Multi-symplectic algorithms for Hamiltonian partial differential equations [J].Commun Appl Math Comput,2013,27(2):163-230.
[11] Hong Jialin,Kong Linghua.Novel multisymplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term [J].Commun Comput Phys,2010,7(6):613-630.
[12] Kong Linghua,Cao Ying,Wang Lan.Split-step multisymplectic integrator for the fourth-order Schrödinger equation with cubic nonlinear term [J].Chin J Comput Phys,2011,28(1):76-82.
[13] 王兰,符芳芳,童慧.Dirac方程的分裂步多辛格式 [J].江西师范大学学报:自然科学版,2013,37(5):462-465.
[14] 王兰.多辛Preissmann格式及其应用 [J].江西师范大学学报:自然科学版,2009,33(1):42-46.
[15] 黄红,王兰.薛定谔方程的局部1维多辛算法 [J].江西师范大学学报:自然科学版,2011,35(5):455-458.

备注/Memo

备注/Memo:
国家自然科学基金(11211171,11301234);江西省自然科学基金(20142BCB23009);江西省教育厅基金(GJJ12174)
更新日期/Last Update: 1900-01-01