[1]艾国金,甘登文,丁树良.计算机化自适应诊断测验双重约束变长终止规则[J].江西师范大学学报(自然科学版),2015,(05):449-452.
 AI Guojin,GAN Dengwen,DING Shuliang.The Dual Restrictions Variable-Length Termination Rule in Cognitive Diagnosis Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(05):449-452.
点击复制

计算机化自适应诊断测验双重约束变长终止规则()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年05期
页码:
449-452
栏目:
出版日期:
2015-10-01

文章信息/Info

Title:
The Dual Restrictions Variable-Length Termination Rule in Cognitive Diagnosis Computerized Adaptive Testing
作者:
艾国金;甘登文;丁树良
江西师范大学计算机信息工程学院,江西南昌,330022
Author(s):
AI Guojin;GAN Dengwen;DING Shuliang
关键词:
计算机化自适应测验认知诊断变长终止规则Monte Carlo模拟
Keywords:
cognitive diagnosiscomputerized adaptive testingvariable-lengthtermination rulesmonte carlo simu-lation
分类号:
B842.1
文献标志码:
A
摘要:
提出3种变长CD-CAT终止规则,在DINA模型、4种属性层级结构下,采用ED选题策略,讨论提出的3种方法与常用CD-CAT终止规则在7个评价指标上的优劣。研究结果显示:新的3种方法较常用终止规则有其自身优势。
Abstract:
Three new variable-length termination rules in cognitive diagnosis computerized adaptive testing is pro-posed. Results of the new methods with pre-existing methods were compared under seven evaluation indexes,using the deterministic inputs,noisy“and”gate( DINA)model,four kinds of attribute hierarchies and the expected dis-crimination method( ED). Date showed that the new three variable-length termination rules have their own advanta-ges.

参考文献/References:

[1] 艾国金,甘登文,丁树良,等.不定长认知诊断计算机化自适应测验终止规则研究 [J].江西师范大学学报:自然科学版,2014,38(5):442-443.
[2] 郭磊,郑蝉金,边玉芳.变长CD-CAT中的曝光控制欲终止规则 [J].心理学报,2015,47(1):130-134.
[3] Tatsuoka C.Data analytic methods for latent partially ordered classification models [J].Applied Statistics,2002,51(3):337-350.
[4] Hsu C L,Wang Wenchung,Chen Shuying.Variable-length computerized adaptive testing based on cognitive diagnosis models [J].Applied Psychological Measurement,2014,4:6-7.
[5] Leighton J P,Gierl M,Hunka S M.The attribute hierarchy method for cognitive assessment:a variation on Tatsuoka's rule-space approach [J].Journal of Educational Measurement,2004,41(3):205-236.
[6] 唐小娟,丁树良,毛萌萌,等.基于属性层级结构的认知诊断测验的组卷 [J].心理学探新,2013,33(3):252-259.
[7] dela Torre J.DINA model and parameter estimation:a didactic [J].Journal of Educational and Behavioral Statistics,2009,34:115-130.
[8] 尚志勇,丁树良.认知诊断自适应测验选题策略探新 [J].江西师范大学学报:自然科学版,2011,35( 4 ):418-421.
[9] 漆书青,戴海琦,丁树良.现代教育与心理测量学原理 [M].北京:高等教育出版社,2002:85-91,97-142.
[10] 丁树良,汪文义,罗芬.多级评分认知诊断测验蓝图的设计:根树型结构 [J].江西师范大学学报:自然科学版,2014,35(2):265-269.
[11] 丁树良,罗芬,汪文义.多级评分认知诊断测验蓝图的设计:独立型和收敛型结构 [J].江西师范大学学报:自然科学版,2014,35(3):111-118.

相似文献/References:

[1]程小扬,丁树良,朱隆尹,等.等级评分模型下的最大信息量分层选题策略[J].江西师范大学学报(自然科学版),2012,(05):446.
 CHENG Xiao-yang,DING Shu-liang,ZHU Long-yin,et al.The Stratified Item Selection Strategy with Maximal Information under Graded Response Model[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):446.
[2]汤楠,丁树良.一阶段选题的最大优先级指标的修正[J].江西师范大学学报(自然科学版),2012,(05):452.
 TANG Nan,DING Shu-liang.Amendment on Maximum Priority Index in One Phase Strategy[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):452.
[3]李娟,丁树良,罗芬.基于等级反应模型的广义距离判别法[J].江西师范大学学报(自然科学版),2012,(06):636.
 HU Hai,GAN Deng-wen,WANG Wen-yi,et al.The Generalized Distance Discrimination Based on Graded Response Model[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):636.
[4]李萍,甘登文,丁树良.自动控制区分度作用的选题策略研究[J].江西师范大学学报(自然科学版),2013,(01):101.
 LI Ping,GAN Deng-wen,DING Shu-liang.The Study of Item Selection Strategy-Automatic Control for the Role of Discrimination Index[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(05):101.
[5]詹沛达,王立君,杨卫敏.引入内容平衡的最大信息量组块分层选题策略[J].江西师范大学学报(自然科学版),2013,(01):106.
 ZHAN Pei-da,WANG Li-jun,YANG Wei-min.The Maximum Information Stratification Method with Content Balancing in Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(05):106.
[6]丁树良,罗芬.由偏序关系的可达阵导出Hasse图的有效算法——兼谈其在认知诊断中的作用[J].江西师范大学学报(自然科学版),2013,(05):441.
 DING Shu-liang,LUO Fen.An Efficient Algorithm of Deriving Hasse Diagram from the Reachibility Matrix of a Partial Order Relation——Together with Its Application to Cognitive Diagnosis[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(05):441.
[7]章沪超,丁树良.各层分布近似的计算机化自适应测验分层选题策略[J].江西师范大学学报(自然科学版),2013,(06):652.
 ZHANG Hu-chao,DING Shu-liang.Similar Distributed Stratification Method for Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(05):652.
[8]戴勰,甘登文,丁树良.结合影子题库的选题策略[J].江西师范大学学报(自然科学版),2013,(06):657.
 DAI Xie,GAN Deng-wen,DING Shu-liang.New Item Selection Method Combining with Shadow Bank[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(05):657.
[9]丁树良,汪文义,罗芬.多级评分认知诊断测验蓝图的设计——根树型结构[J].江西师范大学学报(自然科学版),2014,(02):111.
 DING Shu-liang,WANG Wen-yi,LUO Fen.Design of Polytomous Cognitively Diagnostic Test Blueprint——For the Rooted Tree Type[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(05):111.
[10]章沪超,丁树良,戴勰,等.基于抽样原理的计算机化自适应测验选题策略[J].江西师范大学学报(自然科学版),2014,(02):119.
 ZHANG Hu-chao,DING Shu-liang,DAI Xie,et al.The New Item Selection Strategy for Computerized Adaptive Testing Based on Sampling Principle[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(05):119.

备注/Memo

备注/Memo:
国家自然科学基金(31500909,30860084,31160203,31100756,31360237);国家社会科学基金(12BYY055);江西省教育厅科技计划(GJJ13207,GJJ13226,GJJ13227,GJJ13208,GJJ13209)
更新日期/Last Update: 1900-01-01