参考文献/References:
[1] Aydin A,Karasözen B.Multisymplectic box schemes for the complex modified Korteweg-de equation.[J].J Math Phys,2010,51(8):60-63.
[2] Ascher U M,McLachlan R I.On symplectic and mutisymplectic schemes for the KdV equation [J].J Sci Comput,2005,25(1):83-104.
[3] Wang Yushun,Wang Bing,Chen Xin.Multi-symplectic Euler-box scheme for the KdV equation [J].Chin Phys Lett,2007,24(2):312-314.
[4] 秦孟兆,王雨顺.偏微分方程的保结构算法 [M].杭州:浙江科学技术出版社,2011.
[5] Hong Jialin,Liu Ying.Multisymplecticity of the centred box scheme for a class of Hamiltonian PDEs and an application to quasi-periodically solitary waves [J].Math Comput Model,2004,39(9/10):1035-1047.
[6] Feng Kang,Qin Mengzhao.Symplectic geometric algorithms for Hamilton systems [M].Hangzhou:Zhejiang Science and Technology Publishing House,2010.
[7] 冯康,秦孟兆.哈密尔顿系统的辛几何法 [M].杭州:浙江科学技术出版社,2003.
[8] 王雨顺,王斌,秦孟兆.偏微分方程的局部保结构算法 [J].中国科学,2008,38(4):377-397.
[9] Gong Yuezheng,Cai Jiaxiang,Wang Yushun.Some new structure-preserving algorithms general muti-symplectic formulations of Hamiltonian PDEs [J].J Comput Phys,2014,279(1):80-102.
[10] 蒋朝龙,黄荣芳,孙建强.耦合非线性薛定谔方程的平均离散梯度法 [J].工程数学学报,2014,31(5):707-718.
[11] 李昊晨,孙建强,骆思宇.非线性薛定谔方程的平均向量场方法 [J].计算数学,2013,35(1):59-66.
[12] Celledoni E,Grimm V,Mclachlan R I,et al.Preserving energy resp.dissipation in numerical PDEs using the “average vector field” method [J].J Comput Phys,2012,231(20):6770-6789.
[13] Quispel G R W,McLaren D I.A new class of energy-preserving numerical integration methods [J].J Phys A:Math Theor,2008,41(4):1-7.
[14] Celledoni E,McLachlan R I,Owren B,et al.On conjugate B-series and their geometric structure [J].Journal of Numerical Analysis,Industrial and Applied Mathematics,2010,5(1/2):85-94.
[15] McLachlan R I,Quispel G R W,Robidoux N.Geometric integration using discrete gradients [J].Phil Trans R Soc A,1999,357(1754):1021-1045.
相似文献/References:
[1]张利娟,孙建强*.分数阶Klein-Gordon-Schrdinger方程的保能量方法[J].江西师范大学学报(自然科学版),2022,(03):257.[doi:10.16357/j.cnki.issn1000-5862.2022.03.07]
ZHANG Lijuan,SUN Jianqiang.The Energy-Preserving Method for the Fractional Klein-Gordon-Schrdinger Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(02):257.[doi:10.16357/j.cnki.issn1000-5862.2022.03.07]