[1]罗丽琴,郑秀敏.具[p,q]-φ级亚纯系数的2阶线性微分方程解的复振荡[J].江西师范大学学报(自然科学版),2016,40(04):331-337.
 LUO Liqin,ZHENG Xiumin.The Complex Oscillation of a Second Order Linear Differential Equation with Meromorphic Coefficients of [p,q]-φ Order[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(04):331-337.
点击复制

具[p,q]-φ级亚纯系数的2阶线性微分方程解的复振荡()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2016年04期
页码:
331-337
栏目:
出版日期:
2016-09-01

文章信息/Info

Title:
The Complex Oscillation of a Second Order Linear Differential Equation with Meromorphic Coefficients of [p,q]-φ Order
作者:
罗丽琴郑秀敏
江西师范大学数学与信息科学学院,江西 南昌 330022
Author(s):
LUO LiqinZHENG Xiumin
Institute of Mathematics and Informatics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
线性微分方程 亚纯系数 [pq]-φ级 [pq]-φ收敛指数
Keywords:
linear differential equation meromorphic coefficient [pq]-φ order [pq]-φ convergence exponent
分类号:
O 174.52
文献标志码:
A
摘要:
运用亚纯函数的Nevanlinna值分布理论和方法,对具[p,q]-φ级亚纯系数的2阶线性微分方程的亚纯解的性质进行了研究,得到了亚纯解的增长级和(不同)零极点收敛指数与系数的增长级的关系,所得结果推广了前人的相应结论.
Abstract:
Properties of meromorphic solutions of a second order linear differential equation with meromorphic coefficients of [p,q]-φ order are investigated by using Nevanlinna’s value distribution theory of meromorphic functions.And some results on the relations between the order of meromorphic solutions,the convergence exponent of(distinct)zeros and(distinct)poles of meromorphic solutions,and the order of the coefficients are obtained,which are improvements and extensions of the corresponding results of previous papers.

参考文献/References:

[1] Hayman W K.Meromorphic functions [M].Oxford:Clarendon Press,1964.
[2] Laine I.Nevanlinna theory and complex differential equations [M].Berlin:Walter de Gruyter,1993.
[3] Hayman W K.The local growth of power series:a survey of the Wiman-Valiron method [J].Canad Math Bull,1974,17(3):317-358.
[4] Shen Xia,Tu Jin,Xu Hongyan.Complex oscillation of a second-order linear differential equation with entire coefficients of [p,q]-φ order [J].Adv Difference Equ,2014(200):1-14.
[5] 涂金,刘翠云,徐洪焱.亚纯函数相对于φ(r)的[p,q]增长级 [J].江西师范大学学报:自然科学版,2012,36(1):47-50.
[6] 涂金,魏竞斯,徐洪焱.单位圆内[p,q]-φ(r)级解析函数与亚纯函数的级与型 [J].江西师范大学学报:自然科学版,2015,39(2):207-214.
[7] 涂金,黄海霞,徐洪焱.单位圆内亚纯函数与解析函数的级与型 [J].江西师范大学学报:自然科学版,2013,37(5):449-452.
[8] Cao Tingbin,Li Leimin.Oscillation results on meromorphic solutions of second order differential equations in the complex plane[J].Electron J Qual Theory Differ Equ,2010,68:1-13.
[9] Gundersen G G.Estimates for the logarithmic derivative of a meromorphic function,plus similar estimates [J].J London Math Soc,1988,37(2):88-104.
[10] Hayman W K.Picard values of meromorphic functions and their derivatives [J].Ann Math,1959,70(1):9-42.
[11] Bank S,Laine I.On the zeros of meromorphic solutions of second-order linear differential equations [J].Comment Math Helv,1983,58:656-677.
[12] Tu Jin,Long Teng.Oscillation of complex high order linear differential equations with coefficients of finite iterated order [J].Electron J Qual Theory Differ Equ,2009(66):1-13.
[13] Jank G,Volkmann L.Untersuchungen ganzer und meromorpher funktionen unendlicher ordnung [J].Arch Math,1982,39:32-45.
[14] Tu Jin,Chen Zongxuan.Growth of solutions of complex differential equations with coefficients of finite iterated order [J].Southeast Asian Bull Math,2009,33:153-164.
[15] Kinnunen L.Linear differential equations with solutions of finite iterated order [J].Southeast Asian Bull Math,1998,22(4):385-405.
[16] Bank S,Laine I,Langley J K.Oscillation results for solutions of linear differential equations in the complex domain [J].Results Math,1989,16:3-15.

相似文献/References:

[1]龙见仁,伍鹏程.单位圆上高阶线性微分方程解的性质[J].江西师范大学学报(自然科学版),2012,(02):147.
 LONG Jian-ren,WU Peng-cheng.On the Properities of Solutions for Higher Order Linear Differenrial Equations in the Unit Disc[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(04):147.
[2]何静,郑秀敏.几类高阶线性微分方程亚纯解的迭代级[J].江西师范大学学报(自然科学版),2012,(06):584.
 HE Jing,ZHENG Xiu-min.The Iterated Order of Meromorphic Solutions of Some Classes of Higher Order Linear Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(04):584.
[3]肖丽鹏,李明星.单位圆内非齐次线性微分方程的振荡解[J].江西师范大学学报(自然科学版),2013,(02):166.
 XIAO Li-peng,LI Ming-xing.Oscillatory Solutions of Nonhomogeneous Linear Differential Equation in the Unit Disc[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(04):166.
[4]占燕燕,肖丽鹏.2阶齐次微分方程的次正规解[J].江西师范大学学报(自然科学版),2014,(02):158.
 ZHAN Yan-yan,XIAO Li-peng.The Subnormal Solutions of Second Order Homogeneous Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(04):158.
[5]占美龙,郑秀敏.关于单位圆内亚纯系数线性微分方程解的微分多项式的值分布[J].江西师范大学学报(自然科学版),2014,(05):506.
 ZHAN Mei-long,ZHENG Xiu-min.The Value Distribution of Differential Polynomials Generated by Solutions of Linear Differential Equations with Meromorphic Coefficients in the Unit Disc[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(04):506.
[6]易才凤,钟文波.2阶微分方程f "+ Af '+ Bf =0解的增长性[J].江西师范大学学报(自然科学版),2015,(04):340.
 YI Caifeng,ZHONG Wenbo.On the Growth of Solution to the Second Order Differential Equation f " +Af ' +Bf =0[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(04):340.

备注/Memo

备注/Memo:
收稿日期:2016-03-21基金项目:国家自然科学基金(11301233)和江西省自然科学基金(20151BAB201004)资助项目.通信作者:郑秀敏(1980-),女,江西上饶人,副教授,博士,主要从事复分析方向的研究.
更新日期/Last Update: 1900-01-01