参考文献/References:
[1] 杨乐.值分布理论及其新研究 [M].北京:科学出版社,1982.
[2] 仪洪勋,杨重骏.亚纯函数唯一性理论 [M].北京:科学出版社,1995.
[3] Chen Zongxuan,Yang Chungchun.Some further results on the zeros and growths of entire solutions of second order differential equations [J].Kodai Math J,1999,22(2):273-285.
[4] Kwon K H.Nonexistence of finite order solutions of certain second order linear differential equations [J].Kodai Math J,1996,19(3):378-387.
[5] Chen Zongxuan.The growth of solutions of f ″+e-zf ’+Q(z)f=0 where the order(Q)=1 [J].Sci China:Ser A,2002,45(3):290-300.
[6] Wang Jun, Laine I.Growth of solutions of second order linear differential equations [J].J Math Anal Appl,2008,342(1):39-51.
[7] Belaidi B.Growth and oscillation related to a second order linear differential equation [J].Math Commun,2013,18(1):171-184.
[8] Huang Wenping,Zhou Jinglun,Tu Jin,et al.On the hyper-order of solutions of two class of complex linear differential equations [J].Advances in Difference Equations,2015,234(1):1-12.
[9] 易才凤,钟文波.2阶微分方程f ″+Af ’+Bf=0解的增长性 [J].江西师范大学学报:自然科学版,2015,39(4):340-344.
[10] 涂鸿强,刘慧芳.一类2阶线性微分方程解的增长性 [J].江西师范大学学报:自然科学版,2017,41(2):184-188.
[11] Kinnunen L.Linear differential equations with solutions of finite iterated order [J].Southeast Asian Bull Math,1998,22(4):385-405.
[12] 高仕安,陈宗煊,陈特为.线性微分方程的复振荡理论 [M].武汉:华中理工大学出版社,1988.
[13] Tu Jin,Xu Hongyan,Liu Huangmin,et al.Complex oscillation of higher order linear differential equations with coefficients being lacunary series of finite iterated order [J].Abstr Appl Anal,2013,2013:173-186.
etc.
相似文献/References:
[1]熊辉,刘慧芳.系数为迭代级整函数的高阶线性微分方程的复振荡[J].江西师范大学学报(自然科学版),2015,(02):211.
XIONG Hui,LIU Huifang.The Complex Oscillation of Higher Order Linear Differential Equations
with Coefficients of Finite Iterated Order[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(06):211.
[2]涂鸿强,刘慧芳.一类2阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2017,(02):184.
TU Hongqiang,LIU Huifang.On Growth of Solutions of Some Second Order Linear Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(06):184.
[3]吴丽镐.一类微差分方程整函数解的性质[J].江西师范大学学报(自然科学版),2018,(06):582.[doi:10.16357/j.cnki.issn1000-5862.2018.06.05]
WU Lihao.The Properties of Entire Solutions of a Certain Type of
Differential-Difference Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(06):582.[doi:10.16357/j.cnki.issn1000-5862.2018.06.05]
[4]应 锐,徐洪焱*.随机Dirichlet级数的Hadamard乘积的增长性[J].江西师范大学学报(自然科学版),2019,(05):513.[doi:10.16357/j.cnki.issn1000-5862.2019.05.13]
YING Rui,XU Hongyan*.The Growth of Hadamard Product of Random Dirichlet Series[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(06):513.[doi:10.16357/j.cnki.issn1000-5862.2019.05.13]
[5]余民权,徐洪焱*,刘 林.几类复域偏微差分方程整函数解的存在性与形式[J].江西师范大学学报(自然科学版),2021,(06):620.[doi:10.16357/j.cnki.issn1000-5862.2021.06.10]
YU Minquan,XU Hongyan*,LIU Lin.The Existence and Forms of Entire Solutions of Several Complex Partial Differential-Difference Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(06):620.[doi:10.16357/j.cnki.issn1000-5862.2021.06.10]
[6]谭 晖,肖丽鹏*.关于一类高阶复微分方程解的增长性[J].江西师范大学学报(自然科学版),2022,(04):335.[doi:10.16357/j.cnki.issn1000-5862.2022.04.02]
TAN Hui,XIAO Lipeng*.On the Growth of Solutions of a Class of Higher Order Complex Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(06):335.[doi:10.16357/j.cnki.issn1000-5862.2022.04.02]