参考文献/References:
[1] Qian Zhi,Fu Chuli.Regularization strategies for a two-dimensional inverse heat conduction problem[J].Inverse Problems,2007,23(3):1053-1068.
[2] Fu Chuli.Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation[J].Journal of Computational and Applied Mathematics,2004,167(2):449-463.
[3] Fu Chuli,Feng Xiaoling,Qian Zhi.The Fourier regularization for solving the Cauchy problem for the Helmholtz equation[J].Applied Numerical Mathematics,2009,59(10):2625-2640.
[4] Qian Ailin,Xiong Xiangtuan,Wu Yujiang.On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation[J].Journal of Computational and Applied Mathematics,2010,233(8):1969-1979.
[5] Qin Haihua,Wei Ting.Modified regularization method for the Cauchy problem of the Helmholtz equation[J].Applied Mathematical Modelling,2009,33(5):2334-2348.
[6] Xiong Xiangtuan,Fu Chuli.Two approximate methods of a Cauchy problem for the Helmholtz equation[J].Computational and Applied Mathematics,2007,26(2):285-307.
[7] Fu Chuli,Ma Yunjie,Zhang Yuanxiang,et al.A a posteriori regularization for the Cauchy problem for the Helmholtz equation with inhomogeneous Neumann data[J].Applied Mathematical Modelling,2015,39(14):4103-4120.
[8] Fu Chuli,Feng Xiaoli,Qian Zhi.The Fourier regularization for the Cauchy problem for solving the Helmholtz equation[J].Applied Numerical Mathematis,2009,59(10):2625-2640.
[9] Cheng Hao,Feng Xiaoli.A new filtering method for the Cauchy problem of the Laplace equation[J].International Journal of Computer Mathematics,2014,91(12):2621-2630.
[10] 刘继军.不适定问题的正则化方法及应用[M].北京:科学出版社,2005.
[11] Feng Xiaoli,Fu Chuli,Cheng Hao.A regularization method for solving the Cauchy problem for the Helmholtz equation[J].Applied Mathematical Modelling,2011,35(7):3301-3315.
[12] Fu Chuli,Ma Yunjie,Cheng Hao,et al.The a posteriori Fourier method for solving the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data[J].Applied Mathematical Modelling,2013,37(14/15):7764-7777.
[13] Fu Chuli,Xiong Xiangtuan,Qian Zhi.Fourier regularization for a backward heat equation[J].Math Anal Appl,2007,331(1):472-480.
[14] 曹笑笑,毛东玲,程强,等.带有非齐次Neumann条件的Laplace方程Cauchy问题的一种傅里叶正则化方法[J].湖北大学学报:自然科学版,2017,39(3):236-240.
[15] Kirsch A.An introduction to the mathematical theory of inverse problems[M].Berlin:Springer-Verlag,1996.
相似文献/References:
[1]胡彬,夏赟,喻建华.算子非精确条件下确定正则化参数的一种方法[J].江西师范大学学报(自然科学版),2014,(01):65.
HU Bin,XIA Yun,YU Jian-hua.The Method for Determining Regularization Parameters with Perturbed Operators[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(02):65.
[2]邱淑芳,王泽文,曾祥龙,等.一类时间分数阶扩散方程中的源项反演解法[J].江西师范大学学报(自然科学版),2018,(06):610.[doi:10.16357/j.cnki.issn1000-5862.2018.06.11]
QIU Shufang,WANG Zewen,ZENG Xianglong,et al.The Numerical Method for Reconstructing Source Term in
a Time Fractional Diffusion Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(02):610.[doi:10.16357/j.cnki.issn1000-5862.2018.06.11]
[3]石娟娟,熊向团*.时间反向热传导问题的拟逆正则化方法及误差估计[J].江西师范大学学报(自然科学版),2021,(01):22.[doi:10.16357/j.cnki.issn1000-5862.2021.01.03]
SHI Juanjuan,XIONG Xiangtuan*.The Quasi-Reversibility Regularization Method and Error Estimate for the Time-Inverse Heat Conduction Problem[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(02):22.[doi:10.16357/j.cnki.issn1000-5862.2021.01.03]